Publications

Publications / Journal Article

Characterization of suspended membrane waveguides towards a photonic atom trap integrated platform

Gehl, M.; Kindel, William K.; Karl, Nicholas J.; Orozco, Adrian S.; Musick, Katherine M.; Trotter, Douglas C.; Dallo, Christina M.; Starbuck, Andrew L.; Leenheer, Andrew J.; DeRose, Christopher T.; Biedermann, Grant; Jau, Yuan-Yu J.; Lee, Jongmin L.

We demonstrate an optical waveguide device, capable of supporting the high, invacuum, optical power necessary for trapping a single atom or a cold atom ensemble with evanescent fields. Our photonic integrated platform, with suspended membrane waveguides, successfully manages optical powers of 6 mW (500 μm span) to nearly 30 mW (125 μm span) over an un-tethered waveguide span. This platform is compatible with laser cooling and magnetooptical traps (MOTs) in the vicinity of the suspended waveguide, called the membrane MOT and the needle MOT, a key ingredient for efficient trap loading. We evaluate two novel designs that explore critical thermal management features that enable this large power handling. This work represents a significant step toward an integrated platform for coupling neutral atom quantum systems to photonic and electronic integrated circuits on silicon.