Publications

Publications / Conference

Characteristics of a spring-mass system undergoing centrifuge acceleration

Romero, Edward; Jepsen, Richard A.

Systems in flight often encounter environments with combined vibration and constant acceleration. Sandia National Laboratories has developed a new system capable of combining these environments for hardware qualification testing on a centrifuge. To demonstrate that combined vibration plus centrifuge acceleration is equivalent to the vibration and acceleration encountered in a flight environment the equations of motion of a spring mass damper system in each environment were derived and compared. These equations of motion suggest a decrease in natural frequency for spring mass damper systems undergoing constant rotational velocity on a centrifuge. It was shown mathematically and through experimental testing that the natural frequency of a spring-mass system will decrease with increased rotational velocity. An increase of rotational velocity will eventually result in system instability. The development and testing of a mechanical system to demonstrate this characteristic is discussed. Results obtained from frequency domain analysis of time domain data is presented as is the implications these results conclude about centrifuge testing of systems with low natural frequency on small radius centrifuges.