Publications
Characterisation of two-stage ignition in diesel engine-relevant thermochemical conditions using direct numerical simulation
Krisman, Alexander K.; Hawkes, Evatt R.; Talei, Mohsen; Bhagatwala, Ankit; Chen, Jacqueline H.
With the goal of providing a more detailed fundamental understanding of ignition processes in diesel engines, this study reports analysis of a direct numerical simulation (DNS) database. In the DNS, a pseudo turbulent mixing layer of dimethyl ether (DME) at 400 K and air at 900 K is simulated at a pressure of 40 atmospheres. At these conditions, DME exhibits a two-stage ignition and resides within the negative temperature coefficient (NTC) regime of ignition delay times, similar to diesel fuel. The analysis reveals a complex ignition process with several novel features. Autoignition occurs as a distributed, two-stage event. The high-temperature stage of ignition establishes edge flames that have a hybrid premixed/autoignition flame structure similar to that previously observed for lifted laminar flames at similar thermochemical conditions. A combustion mode analysis based on key radical species illustrates the multi-stage and multi-mode nature of the ignition process and highlights the substantial modelling challenge presented by diesel combustion.