Publications

Publications / Other Report

Capturing Carbonation: Understanding Kinetic Complexities through a New Era of Electron Microscopy

Deitz, Julia D.; Dewers, Thomas D.; Heath, Jason; Polonsky, Andrew P.; Perry, Daniel L.

Cryogenic plasma focused ion beam (PFIB) electron microscopy analysis is applied to visualizing ex situ (surface industrial) and in situ (subsurface geologic) carbonation products, to advance understanding of carbonation kinetics. Ex situ carbonation is investigated using NIST fly ash standard #2689 exposed to aqueous sodium bicarbonate solutions for brief periods of time. In situ carbonation pathways are investigated using volcanic flood basalt samples from Schaef et al. (2010) exposed to aqueous CO2 solutions by them. The fly ash reaction products at room temperature show small amounts of incipient carbonation, with calcite apparently forming via surface nucleation. Reaction products at 75° C show beginning stages of an iron carbonate phase, e.g., siderite or ankerite, common phases in subsurface carbon sequestration environments. This may suggest an alternative to calcite in carbonation low calcium-bearing fly ashes. Flood basalt carbonation reactions show distinct zonation with high calcium and calcium-magnesium bearing zones alternating with high iron-bearing zones. The calcium-magnesium zones are notable with occurrence of localized pore space. Oscillatory zoning in carbonate minerals is distinctly associated with far-from-equilibrium conditions where local chemical environments fluctuate via a coupling of reaction with transport. The high porosity zones may reflect a precursor phase (e.g., aragonite) with higher molar volume that then “ripens” to the high-Mg calcite phase-plus-porosity. These observations reveal that carbonation can proceed with evolving local chemical environments, formation and disappearance of metastable phases, and evolving reactive surface areas. Together this work shows that future application of cryo-PFIB in carbonation studies would provide advanced understanding of kinetic mechanisms for optimizing industrial-scale and commercial-scale applications.