Publications
Calibration of shaker electro-mechanical models
Simple electro-mechanical models of electrodynamic shakers are useful for predicting shaker electrical requirements in vibration testing. A lumped parameter, multiple degree-of-freedom model can sufficiently capture most of the shaker electrical and mechanical features of interest. While several model parameters can be measured directly or obtained from a specifications sheet, others must be inferred from an electrical impedance measurement. Here, shaker model parameters are determined from electrical impedance measurements of a shaker driving a mass. Then, parameter sensitivity is explored to determine a model calibration procedure where model parameters are determined using manual and automated selection methods. The model predictions are then compared to test measurements. The model calibration procedure described in this work provides a simple, practical approach to developing predictive shaker electromechanical models which can then be used in test design and assessment simulations.