Publications
bifiPV2020 Bifacial Workshop: A Technology Overview
Urrejola, Elias U.; Valencia, Felipe J.; Deline, Chris D.; Pelaez, Silvana A.; Meydbray, Jenya M.; Clifford, Tori C.; Kopecek, Radovan K.; Stein, Joshua S.
The virtual bifiPV Workshop was held in July 2020 to provide the solar industry with a forum for sharing and discussing research into bifacial photovoltaic (PV) technology. This report outlines major insights from the workshop to give the reader an overview of the latest developments in bifacial PV technology worldwide, from the lab to the field. Citations are drawn from this workshop unless otherwise noted, with all proceedings available online at bifipvworkshop. com. Presentations for the bifiPV2020 Workshop focused on the following areas: bifacial power plant modeling and simulation, albedo improvements, the development of encapsulants, the durability and reliability of current bifacial technologies, performance comparisons between glass-glass and glass-transparent backsheet configurations, the future of passivated emitter and rear contact (PERC) solar cells, and the growing adoption of n-type solar cells. With 650 GW total PV installed worldwide and 1 TW to come very soon, PERC is now the standard PV cell type produced en masse. However, it is already reaching 23% efficiency, the upper limit for this type of technology. PV modules breaking the 0.5-kW barrier are starting to appear, and the costs of standard PERC technology are already below 0.2 USD/Wp. In 2019, five GW of bifacial PV were installed worldwide. In 2020, the majority of bifacial installations are expected to be located in the United States, China, and Middle East and North Africa (MENA) states. N-type bifacial technologies are becoming increasingly viable and have huge potential to dominate the market in the coming years. With bifacial technology mounted on horizontal single-axis trackers (HSAT), bids below 10 USD/MWh will soon be observed in the MENA region, and later in Chile and the United States. Factory audits and reliability testing can reduce field failures by helping buyers to select producers that follow rigorous quality assurance and quality control processes.