Publications
Azimuthally dependent seismic-wave coherence at the source physics experiment large-n array
Darrh, Andrea N.; Poppeliers, Christian P.; Preston, Leiph A.
We document azimuthally dependent seismic scattering at the Source Physics Experiment (SPE) using the large-N array. The large-N array recorded the seismic wavefield produced by the SPE-5 buried chemical explosion, which occurred in April 2016 at the Nevada National Security Site, U.S.A. By selecting a subset of vertical-component geophones from the large-N array, we formed 10 linear arrays, with different nominal source-receiver azimuths as well as six 2D arrays. For each linear array, we evaluate wavefield coherency as a function of frequency and interstation distance. For both the P arrival and post-P arrivals, the coherency is higher in the northeast propagation direction, which is consistent with the strike of the steeply dipping Boundary fault adjacent to the northwest side of the large-N array. Conventional array analysis using a suite of 2D arrays suggests that the presence of the fault may help explain the azimuthal dependence of the seismic-wave coherency for all wave types. This fault, which separates granite from alluvium, may be acting as a vertically oriented refractor and/or waveguide.