Publications

Publications / SAND Report

Axisymmetric Elastic-Acoustic Coupled Full Waveform Simulation

Preston, Leiph A.

Due to the weight of overburden and tectonic forces, the solid earth is subject to an ambient stress state. This stress state is quasi-static in that it is generally in a state of equilibrium. Typically, seismology assumes this ambient stress field has a negligible effect on wave propagation. However, two basic theories have been put forward to describe the effects of ambient stress on wave propagation. Dahlen and Tromp (2002) expound a theory based on perturbation analysis that largely supports the traditional seismological view that ambient stress is negligible for wave propagation. The second theory, espoused by Korneev and Glubokovskikh (2013) and supported by some experimental work, states that perturbation analysis is inappropriate since the elastic modulus is very sensitive to the ambient stress states. This brief report reformulates the equations given by Korneev and Glubokovskikh (2013) into a more compact form that makes it amenable to statement in terms of a pre-stress form of Hooke's Law. Furthermore, this report demonstrates the symmetries of the pre-stress modulus tensor and discusses the reciprocity relationship implied by the symmetry conditions.