Publications
Atomistic Materials Modeling of High-Pressure Hydrogen Interactions in Ethylene Propylene Diene Monomer (EPDM) Rubber
Wilson, Mark A.; Frischknecht, Amalie F.; Brownell, Matthew P.
Elastomeric rubbers serve a vital role as sealing materials in the hydrogen storage and transport infrastruc- ture. With applications including O-rings and hose-liners, these components are exposed to pressurized hydrogen at a range of temperatures, cycling rates, and pressure extremes. Cyclic (de)pressurization is known to degrade these materials through the process of cavitation. This readily visible failure mode occurs as a fracture or rupture of the material and is due to the oversaturated gas localizing to form gas bubbles. Computational modeling in the Hydrogen Materials Compatibility Program (H-Mat), co-led by Sandia National Laboratories and Pacific Northwest National Laboratory, employs multi-scale sim- ulation efforts to build a predictive understanding of hydrogen-induced damage in materials. Modeling efforts within the project aim to provide insight into how to formulate materials that are less sensitive to high-pressure hydrogen-induced failure. In this document, we summarize results from atomistic molec- ular dynamics simulations, which make predictive assessments of the effects of compositional variations in the commonly used elastomer, ethylene propylene diene monomer (EPDM).