Publications

Publications / SAND Report

Assessment of Physics Models for Phase Transition Kinetics

Kalita, Patricia K.

The time dependence of phase diagrams and how to model rate dependent transitions remains one of the key unanswered questions in physics. When a material is loaded dynamically through equilibrium phase boundaries, it is the kinetics that determines the real time expression of a phase transition. Here we report the atomic and nanosecond-scale quantification of kinetics of shock-driven phase transition in multiple materials. We uniquely make use of a both a simple shock as well as shock-and-hold loading pathways compress different crystalline solids and induce structural phase transitions below melt. Coupling shock loading with time-resolved synchrotron x-ray diffraction (DXRD), we probe the structural transformations of these solids in the short-lived high pressure and temperature states generated. The novelty and power of using DXRD for the assessment of kinetics of phase transitions lies in the ability to discover and identify new phases and to examine kinetics without prior knowledge of a material's phase diagram. Our results provide a quantified expression and a physics model of kinetics of formation of high-pressure phases under shock loading: transition incubation time, evolution, completion time and crystallization rate.