Publications

Publications / Conference Poster

Applications of temporal supersampling in pulse-burst PIV

Beresh, Steven J.; Wagner, Justin W.; DeMauro, Edward P.; Henfling, John F.; Spillers, Russell W.; Farias, Paul A.

Time-resolved PIV has been accomplished in three high-speed flows using a pulse-burst laser: a supersonic jet exhausting into a transonic crossflow, a transonic flow over a rectangular cavity, and a shock-induced transient onset to cylinder vortex shedding. Temporal supersampling converts spatial information into temporal information by employing Taylor’s frozen turbulence hypothesis along local streamlines, providing frequency content until about 150 kHz where the noise floor is reached. The spectra consistently reveal two regions exhibiting power-law dependence describing the turbulent decay. One is the well-known inertial subrange with a slope of-5/3 at high frequencies. The other displays a-1 power-law dependence for as much as a decade of mid-range frequencies lying between the inertial subrange and the integral length scale. The evidence for the-1 power law is most convincing in the jet-in-crossflow experiment, which is dominated by in-plane convection and the vector spatial resolution does not impose an additional frequency constraint. Data from the transonic cavity flow that are least likely to be subject to attenuation due to limited spatial resolution or out-of-plane motion exhibit the strongest agreement with the-1 and-5/3 power laws. The cylinder wake data also appear to show the-1 regime and the inertial subrange in the near-wake, but farther downstream the frozen-turbulence assumption may deteriorate as large-scale vortices interact with one another in the von Kármán vortex street.