Publications
Analysis of Dust Samples Collected from an In-Service Interim Storage System at the Maine Yankee Nuclear Site
Bryan, Charles R.; Enos, David E.
In July, 2016, the Electric Power Research Institute and industry partners performed a field test at the Maine Yankee Nuclear Site, located near Wiscasset, Maine. The primary goal of the field test was to evaluate the use of robots in surveying the surface of an in-service interim storage canister within an overpack; however, as part of the demonstration, dust and soluble salt samples were collected from horizontal surfaces within the interim storage system. The storage system is a vertical system made by NAC International, consisting of a steel-lined concrete overpack containing a 304 stainless steel (SS) welded storage canister. The canister did not contain spent fuel but rather greater-than-class-C waste, which did not generate significant heat, limiting airflow through the storage system. The surfaces that were sampled for deposits included the top of the shield plug, the side of the canister, and a shelf at the bottom of the overpack, just below the level of the pillar on which the canister sits. The samples were sent to Sandia National Laboratories for analysis. This report summarizes the results of those analyses. Because the primary goal of the field test was to evaluate the use of robots in surveying the surface of the canister within the overpack, collection of dust samples was carried out in a qualitative fashion, using paper filters and sponges as the sampling media. The sampling focused mostly on determining the composition of soluble salts present in the dust. It was anticipated that a wet substrate would more effectively extract soluble salts from the surface that was sampled, so both the sponges and the filter paper were wetted prior to being applied to the surface of the metal. Sampling was accomplished by simply pressing the damp substrate against the metal surface for two minutes, and then removing it. It is unlikely that the sampling method quantitatively collected dust or salts from the metal surface; however, both substrates did extract a significant amount of material. The paper filters collected both particles, trapped within the cellulose fibers of the filter, and salts, while the sponges collected only the soluble salts, with very few particles. Upon delivery to Sandia, both collection media were analyzed using the same methods. The soluble salts were leached from the substrates and analyzed via ion chromatography, and insoluble minerals were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The insoluble minerals were found to consist largely of terrestrially-derived mineral fragments, dominantly quartz and biotite. Large (mm-sized) aggregates of calcium carbonate, calcium silicate, and calcium aluminum silicate were also present. The aggregates had one flat, smooth surface and one well crystallized surface, and were interpreted to be efflorescence on the inside of the overpack and in the vent, formed by seepage of cement pore fluids through joints in the steel liner of the overpack. Such efflorescence was commonly observed during the boroscope inspection of the storage system at the site. The material may have flaked off and fallen to the point where the dust was collected, or may have brushed off onto the sponges when the robot was retrieved through the inlet vent. Chemical analysis showed that the soluble salts on the shield plug were Ca- and Na-rich, with lesser K and minor Mg; the anionic component was dominated by SO 4 and Cl, with minor amounts of NO 3 . The cation composition of the soluble salts from the overpack shelf and the canister surface was similar to the filter samples, but the anions differed significantly, being dominantly NO 3 with lesser Cl and only trace SO 4 . The salts appear to represent a mixture of sea-salts (probably partially converted to nitrates and sulfates by particle-gas conversion reactions) and continental salt aerosols. Ammonium, a common component in continental aerosols, was not observed and may have been lost by degassing from the canister surface or after collection during sample storage and transportation. The demonstration at Maine Yankee has shown that the robot and sampling method used for the test can successfully be used to collect soluble salts from metal surfaces within an interim storage system overpack. The results were consistent from sample to sample, suggesting that a representative sample of the soluble salts was being collected. However, it is unlikely that the salt samples collected here represent quantitative sampling of the salts on the surfaces evaluated; for that reason, chloride densities per unit area are not presented here. It should also be noted that the relevance to storage systems at the site that contain SNF may be limited, because a heat- generating canister will result in greater airflow through the overpack, affecting dust deposition rates and possibly salt compositions.