Publications

Publications / Conference Paper

Analysis of a chloride molten salt pump and tank interface for high-temperature operation

Charley, Derrick; Armijo, Kenneth M.; Mendoza, Hector M.

In this investigation, heat transfer analysis of cold and hot pump-tank interfaces for a 2 MWth pilot-scale system is assessed using a developed computational fluid dynamics (CFD) model using ANSYS Fluent. A DOE Generation 3 concentrating solar power (CSP) ternary chloride molten salt mixture is used as the working fluid of each system and evaluated at different temperatures and pressures. In this CFD model work an analysis was performed for a pump assembly at the interface between the test loop and a storage tank. The model was developed for three scenarios with molten salt inlet temperatures set at 500 °C, 720 °C, and 730 °C. The real-world complex geometry was simplified and evaluated as a two- dimensional model with the purpose of estimating overall heat transfer and velocity profiles for the respective system configurations. Preliminary results indicate that pump field insulation absorbs most of the heat from radiating from the molten salt region at a max temperature of 39.48 °C and that heat transfer within the N2 ullage gas region is primarily due to natural convection and radiation.