Publications

Publications / SAND Report

An Exploration of Moving Target Efficacy and Application

Lamb, Christopher L.; Hamlet, Jason H.

Moving target defense (MTD) is an emerging paradigm in which system defenses dynamically mu- tate in order to decrease the overall system attack surface. Though the initial concept is promising, implementations have not been widely adopted. The field has been actively researched for over ten years, and has only produced a small amount of extensively adopted defenses, most notably, address space layout randomization (ASLR). This is despite the fact that there currently exist a variety of moving target implementations and proofs-of-concept. We suspect that this results from the moving target controls breaking critical system dependencies from the perspectives of users and administrators, as well as making things more difficult for attackers. As a result, the impact of the controls on overall system security is not sufficient to overcome the inconvenience imposed on legitimate system users. In this paper, we analyze a successful MTD approach. We study the con- trol's dependency graphs, showing how we use graph theoretic and network properties to predict the effectiveness of the selected control. Then, with this framework in place, the dynamic nature of some Moving Target Defenses opens the possibility of modeling them with dynamic systems approaches, such as state space representations familiar from control and systems theory. We then use this approach to develop state space models for Moving Target Defenses, provide an analysis of their properties, and suggest approaches for using them.