Publications

Publications / SAND Report

An efficient method to estimate the probability density of seismic Green's functions

Poppeliers, Christian P.; Preston, Leiph A.

We present a computationally efficient method to approximate the probability distribution of seismic Green's functions given the uncertainty of an Earth model. The method is based on the Karhunen-Loève (KL) theorem and an approximation of the Green's function (or seismogram) covariance. Using Monte Carlo (MC) simulations as a control case, we demonstrate that our KL-based method can accurately reproduce a probability distribution of seismograms that results from an uncertain Earth model for a MC-derived seismogram covariance. We then describe a method to estimate the covariance of the seismograms resulting from those Earth models that is not based on MC simulations. We use the estimated Green's function covariance in conjunction with our KL-based method to produce a Green's function probability distribution, and compare that distribution to a Green's function probability distribution produced using a MC finite difference method. We find that the Green's function probability distribution approximated using our KL-based method generally mimics that produced using the MC simulations, especially for direct-arriving body waves. However the accuracy of the KL-based method generally decreases for later times in the simulated Green's function distribution.