Publications
An Efficient Holographic Huygens? Metasurface based on Dielectric Resonant Meta-Atoms
Brener, Igal B.; Chong, Katie E.; wang, lei w.; Staude, Isabelle S.; Decker, Manuel D.; Neshev, Dragomir N.; Kivshar, Yuri S.; James, Anthony R.; Dominguez, Jason J.; Subramania, Ganapathi S.; Liu, Sheng L.
Subwavelength-thin metasurfaces have shown great promises for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens’ metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a holographic Huygens’ metasurface based on dielectric resonant meta-atoms capable of complex wavefront control at telecom wavelengths. Our metasurface produces a hologram image in the far-field with 82% transmittance efficiency and 40% imaging efficiency. Such efficient complex wavefront control shows that Huygens’ metasurfaces based on resonant dielectric meta-atoms are a big step towards practical applications of metasurfaces in wavefront design related technologies, including computer-generated holograms, ultra-thin optics, security and data storage devices.