Publications
All-epitaxial long-range surface plasmon polariton structures with integrated active materials
Nordin, L.; Petluru, P.; Muhowski, A.J.; Shaner, Eric A.; Wasserman, D.
We demonstrate all-epitaxial structures capable of supporting short- and long-range surface plasmon polariton (SRSPP and LRSPP) modes in the long-wave infrared region of the electromagnetic spectrum. The SRSPP and LRSPP modes are bound to the interfaces of a buried heavily doped (n + +) semiconductor layer and surrounding quantum-engineered type-II superlattice (T2SL) materials. The surrounding T2SLs are designed to allow optical transitions across the frequency dispersion of the SPP modes. We map the SPP dispersion in our structure using grating-coupled angle- and polarization-dependent reflection and photoluminescence spectroscopy. The epitaxial structures are analytically described using a simplified three-layer system (T 2 SL / n + + / T 2 SL) and modeled using rigorous coupled wave analysis with excellent agreement to our experimental results. The presented structures offer the potential to serve as long-range interconnects or waveguides in all-epitaxial plasmonic/optoelectronic systems operating in the long-wave infrared.