Publications
All-Epitaxial Integration of Long-Wavelength Infrared Plasmonic Materials and Detectors for Enhanced Responsivity
Nordin, Leland; Kamboj, Abhilasha; Petluru, Priyanka; Shaner, Eric A.; Wasserman, Daniel
Infrared detectors using monolithically integrated doped semiconductor "designer metals"are proposed and experimentally demonstrated. We leverage the "designer metal"groundplanes to form resonant cavities with enhanced absorption tuned across the long-wave infrared (LWIR). Detectors are designed with two target absorption enhancement wavelengths: 8 and 10 μm. The core of our detectors are quantum-engineered LWIR type-II superlattice p-i-n detectors with total thicknesses of only 1.42 and 1.80 μm for the 8 and 10 μm absorption enhancement devices, respectively. Our 8 and 10 μm structures show peak external quantum efficiencies of 45 and 27%, which are 4.5× and 2.7× enhanced, respectively, compared to control structures. We demonstrate the clear advantages of this detector architecture, both in terms of ease of growth/fabrication and enhanced device performance. The proposed architecture is absorber- A nd device-structure agnostic, much thinner than state-of-the-art LWIR T2SLs, and offers the opportunity for the integration of low dark current LWIR detector architectures for significant enhancement of IR detectivity.