Publications

Publications / Journal Article

Airborne Infrasound Makes a Splash

Bowman, Daniel B.

Natural and anthropogenic events may create low frequency sound waves, or infrasound, that can travel for vast distances in planetary atmospheres. They permit the remote monitoring of geophysical activity over local to global scales. Most studies have utilized ground-based recorders, but it is possible to deploy acoustic sensors to altitudes of over 50 km. Such elevated platforms can capture sounds that their surface analogs cannot access. High altitude balloons and low altitude aerostats are filling this observation gap, but key environments remain out of reach of both of these. Recent work by den Ouden, Smets et al. (2021) addressed this with a new instrumentation platform—a large seabird flying just above the ocean's surface. Their work demonstrates that, infrasound sensing using heavier-than-air platforms in windy environments is possible, which has implications both terrestrially (e.g., extending sensor networks over the oceans) and extraterrestrially (proposed or planned missions to Venus and Titan).