Publications

Publications / Other Report

AI-Based Protective Relays for Electric Grid Resiliency

Reno, Matthew J.; Blakely, Logan

The protection systems (circuit breakers, relays, reclosers, and fuses) of the electric grid are the primary component responding to resilience events, ranging from common storms to extreme events. The protective equipment must detect and operate very quickly, generally <0.25 seconds, to remove faults in the system before the system goes unstable or additional equipment is damaged. The burden on protection systems is increasing as the complexity of the grid increases; renewable energy resources, particularly inverter-based resources (IBR) and increasing electrification all contribute to a more complex grid landscape for protection devices. In addition, there are increasing threats from natural disasters, aging infrastructure, and manmade attacks that can cause faults and disturbances in the electric grid. The challenge for the application of AI into power system protection is that events are rare and unpredictable. In order to improve the resiliency of the electric grid, AI has to be able to learn from very little data. During an extreme disaster, it may not be important that the perfect, most optimal action is taken, but AI must be guaranteed to always respond by moving the grid toward a more stable state during unseen events.