Publications

Publications / SAND Report

Aero-Optics of Hypersonic Turbulent Boundary Layers

Lynch, Kyle P.; Miller, Nathan M.; Guildenbecher, Daniel R.; Butler, Luke B.; Gordeyev, Stanislav G.; Castillo, Pedro G.; Gross, Andreas G.; Wang, Gwendolyn T.; Mazumdar, Yi C.

Aero-optics refers to optical distortions due to index-of-refraction gradients that are induced by aerodynamic density gradients. At hypersonic flow conditions, the bulk velocity is many times the speed of sound and density gradients may originate from shock waves, compressible turbulent structures, acoustic waves, thermal variations, etc. Due to the combination of these factors, aero-optic distortions are expected to differ from those common to sub-sonic and lower super-sonic speeds. This report summarizes the results from a 2019-2022 Laboratory Directed Research and Development (LDRD) project led by Sandia National Laboratories in collaboration with the University of Notre Dame, New Mexico State University, and the Georgia Institute of Technology. Efforts extended experimental and simulation methodologies for the study of turbulent hypersonic boundary layers. Notable experimental advancements include development of spectral de-aliasing techniques for highspeed wavefront measurements, a Spatially Selective Wavefront Sensor (SSWFS) technique, new experimental data at Mach 8 and 14, a Quadrature Fringe Imaging Interferometer (QFII) technique for time-resolved index-of-refraction measures, and application of QFII to shock-heated air. At the same time, model advancements include aero-optic analysis of several Direct Numerical Simulation (DNS) datasets from Mach 0.5 to 14 and development of wall-modeled Large Eddy Simulation (LES) techniques for aero-optic predictions. At Mach 8 measured and predicted root mean square Optical Path Differences agree within confidence bounds but are higher than semi-empirical trends extrapolated from lower Mach conditions. Overall, results show that aero-optic effects in the hypersonic flow regime are not simple extensions from prior knowledge at lower speeds and instead reflect the added complexity of compressible hypersonic flow physics.