Publications

Publications / Journal Article

Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells

Aaron, Jesse S.; Greene, Adrienne C.; Kotula, Paul G.; Bachand, George B.; Timlin, Jerilyn A.

The biocompatibility and possible toxicological consequences of engineered nanomaterials, including quantum dots (QDs) due to their unique suitability for biomedical applications, remain intense areas of interest. We utilized advanced imaging approaches to characterize the interactions of CdSe QDs of various sizes and shapes with live immune cells. Particle diffusion and partitioning within the plasma membrane, cellular uptake kinetics, and sorting of particles into lysosomes were all independantly characterized. Using high-speed total internal reflectance fluorescence (TIRF) microscopy, we show that QDs with an average aspect ratio of 2.0 (i.e., rod-shaped) diffuse nearly an order of magnitude slower in the plasma membrane than more spherical particles with aspect ratios of 1.2 and 1.6, respectively. Moreover, more rod-shaped QDs were shown to be internalized into the cell 2-3 fold more slowly. Hyperspectral confocal fluorescence microscopy demonstrates that QDs tend to partition within the cell membrane into regions containing a single particle type. Furthermore, data examining QD sorting mechanisms indicate that endocytosis and lysosomal sorting increases with particle size. Together, these observations suggest that both size and aspect ratio of a nanoparticle are important characteristics that significantly impact interactions with the plasma membrane, uptake into the cell, and localization within intracellular vesicles. Thus, rather than simply characterizing nanoparticle uptake into cells, we show that utilization of advanced imaging approaches permits a more nuanced and complete examination of the multiple aspects of cell-nanoparticle interactions that can ultimately aid understanding possible mechanisms of toxicity, resulting in safer nanomaterial designs. Using hyperspectral confocal fluorescence (HCF) microscopy, it is shown that quantum dots of various sizes and shapes partition themselves into distinct regions within the cell membrane of RBL-2H3 rat mast cells. HCF microscopy allows for deconvolving the signal from multiple, overlapping fluorophores in the sample in order to reveal precise concentrations and distributions of nanoparticles in the cell. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.