Publications
Advanced Downhole Acoustic Sensing for Wellbore Integrity (Final Report)
Dewers, Thomas D.; Reda-Taha, Mahmoud R.; Stormont, John C.; Pyrak-Nolte, Laura J.; Ahmadian, Mohsen A.; Chapman, David C.
Borehole cement is used across the range of energy technologies to stabilize casing, to serve as a barrier to behind-casing fluid movement. Cement debonding and other flaws, both at cement interfaces and within the cement itself, can create leakage pathways that can threaten safety to personnel, and wellbore performance, with economic and regulatory consequences. A primary method to assess cement health and wellbore integrity is via acoustic methods. This project was designed with three aims: demonstrate a significant improvement in the interpretation of cement acoustic behavior, both during curing, and in interpreting effects of flaws and evolving interfaces; develop sensor technologies to improve signal-noise ratios and cement acoustic responses; and lastly, provide a borehole demonstration of at least one of these technologies. We have accomplished the first two objectives, and the third, delayed by pandemic health concerns, is proceeding as of this writing via a technology partner with the University of Texas Advanced Energy Consortium.