Publications

Publications / Conference Poster

Addressing technical and regulatory requirements to deploy structural health monitoring systems on commercial aircraft

Roach, D.; Rice, Thomas M.

Multi-site fatigue damage, hidden cracks in hard-to-reach locations, disbonded joints, erosion, impact, and corrosion are among the major flaws encountered in today's extensive fleet of aging aircraft. The use of in-situ sensors for real-time health monitoring of aircraft structures, coupled with remote interrogation, provides a viable option to overcome inspection impediments stemming from accessibility limitations, complex geometries, and the location and depth of hidden damage. Reliable, Structural Health Monitoring (SHM) systems can automatically process data, assess structural condition, and signal the need for human intervention. Prevention of unexpected flaw growth and structural failure can be improved if on-board health monitoring systems are used to continuously assess structural integrity. Such systems can detect incipient damage before catastrophic failures occurs. Other advantages of on-board distributed sensor systems are that they can eliminate costly and potentially damaging disassembly, improve sensitivity by producing optimum placement of sensors and decrease maintenance costs by eliminating more time-consuming manual inspections. This paper presents the results from successful SHM technology validation efforts that established the performance of sensor systems for aircraft fatigue crack detection. Validation tasks were designed to address the SHM equipment, the health monitoring task, the resolution required, the sensor interrogation procedures, the conditions under which the monitoring will occur, and the potential inspector population. All factors that affect SHM sensitivity were included in this program including flaw size, shape, orientation and location relative to the sensors, operational and environmental variables and issues related to the presence of multiple flaws within a sensor network. This paper will also present the formal certification tasks including formal adoption of SHM systems into aircraft manuals and the release of an Alternate Means of Compliance and a modified Service Bulletin to allow for routine use of SHM sensors on commercial aircraft. This program also established a regulatory approval process that includes FAR Part 25 (Transport Category Aircraft) and shows compliance with 25.571 (fatigue) and 25.1529 (Instructions for Continued Airworthiness).