Publications

Publications / Conference Poster

Adaptive model predictive control for real-time dispatch of energy storage systems

Copp, David C.; Nguyen, Tu A.; Byrne, Raymond H.

Energy storage systems are flexible and controllable resources that can provide a number of services for the electric power grid. Many technologies are available, and corresponding models vary greatly in level of detail and tractability. In this work, we propose an adaptive optimal control and estimation approach for real-time dispatch of energy storage systems that neither requires accurate state-of-energy measurements nor knowledge of an accurate state-of-energy model. Specifically, we formulate an online optimization problem that simultaneously solves moving horizon estimation and model predictive control problems, which results in estimates of the state-of-energy, estimates of the charging and discharging efficiencies, and future dispatch signals. We present a numerical example in which the plant is a nonlinear, time-varying Lithium-ion battery model and show that our approach effectively estimates the state-of-energy and dispatches the system without accurate knowledge of the dynamics and in the presence of significant measurement noise.