Publications

Publications / SAND Report

Active and Nonreciprocal Radio-Frequency Acoustic Microsystems

Hackett, Lisa A.; Siddiqui, Aleem M.; Dominguez, Daniel D.; Douglas, James K.; Tauke-Pedretti, Anna; Friedmann, Thomas A.; Peake, Gregory M.; Arterburn, Shawn C.; Miller, Michael R.; Eichenfield, Matthew S.

Radio frequency (RF) devices are becoming more multi-band, increasing the number of filters and other front-end components while simultaneously pushing towards reduced cost, size, weight, and power (CSWaP). One approach to reducing CSWaP is to augment the achievable functionalities of electromechanical/acoustic filtering chips to include "active" and nonlinear functionalities, such as gain and mixing. The acoustoelectric (AE) effect could enable such active acoustic wave devices. We have examined the AE effect with a leaky surface acoustic wave (LSAW) in a monolithic structure of epitaxial indium gallium arsenide (In GaAs) on lithium niobate (LiNb0 3 ). This lead to experimentally demonstrated state-of-the-art SAW amplifier performance in terms of gain per acoustic wavelength, reduced power consumption, and increased power efficiency. We quantitatively compare the amplifier performance to previous notable works and discuss the outlook of active acoustic wave components using this material platform. Ultimately, this could lead to smaller, higher-performance RF signal processors for communications applications.