Publications
Active airflow for reducing advective and particle loss in falling particle receivers
Yue, Lindsey; Shaeffer, Reid; Mills, Brantley M.; Ho, Clifford K.
Two active airflow control methods are investigated to mitigate advective and particle losses from the open aperture of a falling particle receiver. Advective losses can be reduced via active airflow methods. However, in the case of once-through suction, energy lost as enthalpy of hot air due to active airflow needs to be minimized so that thermal efficiency can be maximized. In the case of forced air injection, a properly configured aerowindow can reduce advective losses substantially for calm conditions. Although some improvement is offered in windy conditions, an aerowindow in the presence of winds does not show an ability to mitigate advective losses to values achievable by an aerowindow in the absence of wind. The two active airflow methods considered in this paper both show potential for efficiency improvement, but the improvement many not be justified given the added complexity and cost of implementing an active airflow system. While active airflow methods are tractable for a 1 MWth cavity receiver with a 1 m square aperture, the scalability of these active airflow methods is questionable when considering commercial scale receivers with 10–20 m square apertures or larger.