Publications

Publications / Journal Article

Absolute Hugoniot measurements for CH foams in the 2-9 Mbar range

Aglitskiy, Y.; Velikovich, A.L.; Karasik, M.; Schmitt, A.J.; Serlin, V.; Weaver, J.L.; Oh, J.; Obenschain, S.P.; Cochrane, Kyle C.

Absolute Hugoniot measurements for empty plastic foams at ∼10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ∼400 μm thick and ∼500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ∼9 Mbar. The motion of the shock and ablation fronts was recorded using side-on monochromatic x-ray imaging radiography. The steadiness of the observed shock and ablation fronts within ∼1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ∼9 Mbar and density compression ratio ∼5. In the lower pressure range 2-5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.