Publications

Publications / Other Report

A targeted opsonization platform for programming innate immunity against rapidly evolving novel viruses

Cahill, Jesse L.

Recent work has shown that artificial opsonins stimulate the targeted destruction of bacteria by phagocyte immune cells. Artificial opsonization has the potential to direct the innate immune system to target novel antigens, potentially even viral pathogens. Furthermore, the engagement of innate immunity presents a potential solution for the spread of pandemics in a scenario when a vaccine is unavailable or ineffective. Funded by the LDRD late start bioscience pandemic response program, we tested whether artificial opsonins can be developed to target viral pathogens using phage MS2 and a SARS-CoV-2 surrogate. To direct opsonization against these viruses we purified antibody derived viral targeting motifs and attempted the same chemical conjugation strategies that produced bacterial targeting artificial opsonins. However, the viral targeting motifs proved challenging to conjugate using these methods, frequently resulting in precipitation and loss of product. Future studies may be successful with this approach if a smaller and more soluble viral-targeting peptide could be used.