Publications
A sequential vehicle classifier for infrared video using multinomial pattern matching
Koch, Mark W.; Malone, Kevin T.
Vehicle classification is a challenging problem, since vehicles can take on many different appearances and sizes due to their form and function, and the viewing conditions. The low resolution of uncooled-infrared video and the large variability of naturally occurring environmental conditions can make this an even more difficult problem. We develop a multilook fusion approach for improving the performance of a single look system. Our single look approach is based on extracting a signature consisting of a histogram of gradient orientations from a set of regions covering the moving object. We use the multinomial pattern matching algorithm to match the signature to a database of learned signatures. To combine the match scores of multiple signatures from a single tracked object, we use the sequential probability ratio test. Using real infrared data we show excellent classification performance, with low expected error rates, when using at least 25 looks. © 2006 IEEE.