Publications
A Novel Metal-to-Insulator Transition Found Promising for Neuromorphic Computing
Materials exhibiting metal-to-insulator transitions (MITs) could enable low power neuromorphic computing, but progress is hindered by insufficient mechanistic understanding. In this issue of Matter, Banerjee and colleagues describe with intricate detail a new MIT mechanism in β′-CuxV2O5, with potential applications to neuromorphic computing. Materials exhibiting metal-to-insulator transitions (MITs) could enable low power neuromorphic computing, but progress is hindered by insufficient mechanistic understanding. In this issue of Matter, Banerjee and colleagues describe with intricate detail a new MIT mechanism in β′-CuxV2O5, with potential applications to neuromorphic computing.