Publications

Publications / Conference

A nondeterministic shock and vibration application using polynomial chaos expansions

Field, Richard V.; Red-Horse, John R.; Paez, Thomas L.

In the current study, the generality of the key underpinnings of the Stochastic Finite Element (SFEM) method is exploited in a nonlinear shock and vibration application where parametric uncertainty enters through random variables with probabilistic descriptions assumed to be known. The system output is represented as a vector containing Shock Response Spectrum (SRS) data at a predetermined number of frequency points. In contrast to many reliability-based methods, the goal of the current approach is to provide a means to address more general (vector) output entities, to provide this output as a random process, and to assess characteristics of the response which allow one to avoid issues of statistical dependence among its vector components.