Publications

Publications / Conference Poster

A modal craig-bampton substructure for experiments, analysis, control and specifications

Mayes, R.L.

This work was motivated by a desire to transform an experimental dynamic substructure derived using the transmission simulator method into the Craig-Bampton substructure form which could easily be coupled with a finite element code with the Craig-Bampton option. Near the middle of that derivation, a modal Craig-Bampton form emerges. The modal Craig-Bampton (MCB) form was found to have several useful properties. The MCB matrices separate the response into convenient partitions related to (1) the fixed boundary modes of the substructure (a diagonal partition), (2) the modes of the fixture it is mounted upon, (3) the coupling terms between the two sets of modes. Advantages of the MCB are addressed. (1) The impedance of the boundary condition for component testing, which is usually unknown, is quantified with simple terms. (2) The model is useful for shaker control in both single degree of freedom and multiple degree of freedom shaker control systems. (3) MCB provides an energy based framework for component specifications to reduce over-testing but still guarantee conservatism.