Publications

Publications / Conference

A Miniature, High-Resolution Laser Radar Operating at Video Rates

Smithpeter, Colin L.; Nellums, Robert N.; Lebien, Steven M.

The authors are developing a laser radar to meet the needs of NASA for a 5-lb, 150 in{sup 3} image sensor with a pixel range accuracy of 0.1-inch. NASA applications include structural dynamics measurements, navigation guidance in rendezvous and proximity operations, and space vehicle inspection. The sensor is based on the scannerless range imager architecture developed at Sandia. This architecture modulates laser floodlight illumination and a focal plane receiver to phase encode the laser time of flight (TOF) for each pixel. They believe this approach has significant advantages over architectures directly measuring TOF including high data rate, reduced detector bandwidth, and conventional FPA detection. A limitation of the phase detection technique is its periodic nature, which provides relative range information over a finite ambiguity interval. To extend the operating interval while maintaining a given range resolution, a LADAR sensor using dual modulation frequencies has been developed. This sensor also extends the relative range information to absolute range by calibrating a gating function on the receiver to the TOF. The modulation frequency values can be scaled to meet the resolution and range interval requirements of different applications. Results from the miniature NASA sensor illustrate the advantages of the dual-frequency operation and the ability to provide the range images of 640 by 480 pixels at 30 frames per second.