Publications
A microwave resonance diagnostic for measuring characteristics of pulsed ion beams
Laity, George R.; Barnat, Edward V.
This paper describes an experiment to characterize ions generated by a pulsed vacuum arc by using a microwave resonant cavity (MRC) as a transient diagnostic. Specific information is desired on the various species which can drift into the beam during repetitive operations of arc plasma generation. The arc source reference voltage is elevated above ground (∼200V), which results in a separation of ion species in the beam due to the acceleration experienced by the ions. The cylindrical MRC used in this study has a resonant frequency of ∼2.8 GHz when excited by a continuous RF source in the TM01 mode of operation. When the neutralized ion beam propagates through the MRC located downstream from the arc source, the resonant frequency of the MRC is shifted by the local disturbance in electric field inside the cavity due to the presence of the electron space charge in the beam. Coupled with the time-of-flight separation of various ion masses, the MRC resonance shift provides a temporally resolved measurement of beam species and density downstream from the vacuum ion source without the use of a potentially invasive diagnostic such as charge collector plates within the beam cross-section. This diagnostic technique should prove useful in a variety of pulsed ion beam studies and applications in research and industrial environments.