Publications

Publications / Conference

A continuum-scale model of hydrogen precipitate growth in tungsten plasma-facing materials

Kolasinski, Robert K.; Cowgill, D.F.; Causey, Rion A.

The low solubility of hydrogen in tungsten leads to the growth of near-surface hydrogen precipitates during high-flux plasma exposure, strongly affecting migration and trapping in the material. We have developed a continuum-scale model of precipitate growth that leverages existing techniques for simulating the evolution of 3He gas bubbles in metal tritides. The present approach focuses on bubble growth by dislocation loop punching, assuming a diffusing flux to nucleation sites that arises from ion implantation. The bubble size is dictated by internal hydrogen pressure, the mechanical properties of the material, as well as local stresses. In this article, we investigate the conditions required for bubble growth. Recent focused ion beam (FIB) profiling studies that reveal the sub-surface damage structure provide an experimental database for comparison with the modeling results. © 2010 Elsevier B.V. All rights reserved.