Publications

Publications / Conference

A computational study of explosive hazard potential for reuseable launch vehicles

Freitas, Christopher J.; Chocron, Sidney; Palmer, Donald; Langley, Patrick; Kipp, Marlin E.; Saul, WVenner S.; Langston, Leo J.

Catastrophic failure of a Reusable Launch Vehicle (RLV) during launch poses a significant engineering problem in the context of crew escape. The explosive hazard potential of the RLV changes during the various phases of the launch. The hazard potential in the on-pad environment is characterized by release and formation of a gas phase mixture in an oxidizer rich environment, while the hazard during the in-flight phase is dominated by the boundary layer and wake flow formed around the vehicle and the interaction with the exhaust gas plume. In order to address more effectively crew escape in these explosive environments a computational analysis program was undertaken by Lockheed Martin, funded by NASA JSC, with simulations and analyses completed by Southwest Research Institute and Sandia National Laboratories. This paper presents then the details of the methodology used in this analysis, results of the study, and important conclusions that came out of the study. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.