Publications
A comparative study of contrasting machine learning frameworks applied to rans modeling of jets in crossflow
Weatheritt, Jack; Sandberg, Richard D.; Ling, Julia L.; Saez, Gonzalo; Bodart, Julien
Classical RANS turbulence models have known deficiencies when applied to jets in crossflow. Identifying the linear Boussinesq stress-strain hypothesis as a major contribution to erroneous prediction, we consider and contrast two machine learning frameworks for turbulence model development. Gene Expression Programming, an evolutionary algorithm that employs a survival of the fittest analogy, and a Deep Neural Network, based on neurological processing, add non-linear terms to the stress-strain relationship. The results are Explicit Algebraic Stress Model-like closures. High fidelity data from an inline jet in crossflow study is used to regress new closures. These models are then tested on a skewed jet to ascertain their predictive efficacy. For both methodologies, a vast improvement over the linear relationship is observed.