Publications
304L Can Crush Validation Studies
Lao, Xai L.; Antoun, Bonnie R.; Jones, Amanda; Mac Donald, Kimberley A.; Stershic, Andrew J.; talamini, brandon t.
Accurate prediction of ductile behavior of structural alloys up to and including failure is essential in component or system failure assessment, which is necessary for nuclear weapons alteration and life extensions programs of Sandia National Laboratories. Modeling such behavior requires computational capabilities to robustly capture strong nonlinearities (geometric and material), rate- dependent and temperature-dependent properties, and ductile failure mechanisms. This study's objective is to validate numerical simulations of a high-deformation crush of a stainless steel can. The process consists of identifying a suitable can geometry and loading conditions, conducting the laboratory testing, developing a high-quality Sierra/SM simulation, and then drawing comparisons between model and measurement to assess the fitness of the simulation in regards to material model (plasticity), finite element model construction, and failure model. Following previous material model calibration, a J2 plasticity model with a microstructural BCJ failure model is employed to model the test specimen made of 304L stainless steel. Simulated results are verified and validated through mesh and mass-scaling convergence studies, parameter sensitivity studies, and a comparison to experimental data. The converged mesh and degree of mass-scaling are the mesh discretization with 140,372 elements, and a mass scaling with a target time increment of 1.0e-6 seconds and time step scale factor of 0.5, respectively. Results from the coupled thermal-mechanical explicit dynamic analysis are comparable to the experimental data. Simulated global force vs displacement (F/D) response predicts key points such as yield, ultimate, and kinks of the experimental F/D response. Furthermore, the final deformed shape of the can and field data predicted from the analysis are similar to that of the deformed can, as measured by 3D optical CMM scans and DIC data from the experiment.