Moe Khalil

R&D S&E, Computer Science

Author profile picture

R&D S&E, Computer Science

mkhalil@sandia.gov

Google Scholar

Biography

Moe Khalil is a Principal Member of the Technical Staff at Sandia National Laboratories, Livermore, California, in the Quantitative Modeling and Software Engineering department. He also holds an adjunct research professor position in the department of Civil & Environmental Engineering at Carleton University, Canada.  He received a B.Sc. in Microbiology and Immunology and a B.Eng. in Computer and Electrical Engineering from McGill University, Canada, and M.Sc. and Ph.D. degrees in Civil and Environmental Engineering from Carleton University, Canada.

He has 20 years of experience developing Bayesian inference algorithms for machine-learning model calibration, parameter estimation, data assimilation, data-driven model selection, and transfer learning, with applications in fluid-structure interaction, material science, combustion modeling, radiation detection, nonlinear structural dynamics, wildfire forecasting, time-series analysis, and near-shore wave forecasting for energy harvesting.

Education

Ph.D.Civil & Environmental EngineeringCarleton University2013
M.A.Sc.Civil & Environmental EngineeringCarleton University2006
B.Eng.Electrical & Computer EngineeringMcGill University2004
B.Sc.Microbiology & ImmunologyMcGill University2000

Publications

Philippe Bisaillon, Rimple Sandhu, Chris Pettit, Mohammad Khalil, Dominique Poirel, C. Manohar, Abhijit Sarkar, (2022). Combined selection of the dynamic model and modeling error in nonlinear aeroelastic systems using Bayesian Inference Journal of Sound and Vibration https://doi.org/10.1016/j.jsv.2021.116418 Publication ID: 66015

Khachik Sargsyan, Cosmin Safta, Luke Boll, Katherine Johnston, Mohammad Khalil, Kamaljit Chowdhary, Prashant Rai, Tiernan Casey, Xiaoshu Zeng, Bert Debusschere, (2022). UQTk Version 3.1.2 User Manual https://doi.org/10.2172/1855040 Publication ID: 79950

Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2021). Extending relevance vector machine to resolve overtting during Bayesian calibration in nonlinear stochastic dynamics https://doi.org/10.2172/1890899 Publication ID: 76095

Ryan Coe, Giorgio Bacelli, Daniel Gaebele, Cotten Alfred, Cameron McNatt, David Wilson, Wayne Weaver, Jeremy Kasper, Mohammad Khalil, Ann Dallman, (2021). Modeling and predicting power from a WEC array https://www.osti.gov/servlets/purl/1894013 Publication ID: 76363

Mohammad Khalil, (2021). Probabilistic Approaches to Transfer Learning https://doi.org/10.2172/1882483 Publication ID: 79375

G.H. Teichert, Mohammad Khalil, Coleman Alleman, K. Garikipati, Reese Jones, (2021). Sensitivity of void mediated failure to geometric design features of porous metals https://doi.org/10.2172/1882104 Publication ID: 79591

Philippe Bisaillon, Ajit Desai, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2021). A parallel update step of a sampling-free EnKF-type %0Clter https://doi.org/10.2172/1872702 Publication ID: 78805

Brandon Robinson, Philippe Bisaillon, Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2021). Nonlinear sparse Bayesian learning using EnKF based state estimator https://doi.org/10.2172/1872703 Publication ID: 78806

Mohammad Khalil, (2021). Probabilistic Approaches to Transfer Learning https://www.osti.gov/servlets/purl/1861973 Publication ID: 77914

Grace Chang, Ann Dallman, Kaustubha Raghukumar, Mohammad Khalil, Jeremy Kasper, Craig Jones, Jesse Roberts, (2021). Wave Energy Production Optimization and Forecasting Tool https://doi.org/10.2172/1862634 Publication ID: 77952

Brandon Robinson, R. Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2021). Sparse learning of a nonlinear aeroelastic model using Bayesian inference https://doi.org/10.2172/1853863 Publication ID: 77418

R. Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2021). Sparse Learning of Over-Parametrized Nonlinear Engineering Models https://doi.org/10.2172/1853864 Publication ID: 77419

Mohammad Khalil, Ann Dallman, Kaus Raghukumar, Christopher Flanary, (2021). Wave Data Assimilation in Support of Wave Energy Converter Power Prediction https://doi.org/10.2172/1854077 Publication ID: 77441

Philippe Bisaillon, R. Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2021). Calibrating optimal modeling error in nonlinear dynamics https://doi.org/10.2172/1854319 Publication ID: 77460

Ajit Desai, P. Sudhi, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2021). Domain Decomposition of Stochastic PDEs using FEniCS https://doi.org/10.2172/1859682 Publication ID: 77757

Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2021). Nonlinear sparse Bayesian learning for physics-based models Journal of Computational Physics https://doi.org/10.1016/j.jcp.2020.109728 Publication ID: 66655

Sudhi Sharma, Ajit Desai, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2021). Scalable domain decomposition algorithms for uncertainty quantification: three-dimensional and time-dependent SPDEs https://doi.org/10.2172/1847594 Publication ID: 77256

Ryan Coe, Giorgio Bacelli, Daniel Gaebele, Alfred Cotten, Cameron McNatt, David Wilson, Wayne Weaver, Jeremy Kasper, Mohammad Khalil, Ann Dallman, (2021). Modeling and predicting power from a WEC array Oceans Conference Record (IEEE) https://doi.org/10.2172/1887348 Publication ID: 75640

Mohammad Khalil, G. Teichert, Coleman Alleman, Nathan Heckman, Reese Jones, K. Garikipati, B. Boyce, (2021). Modeling strength and failure variability due to porosity in additively manufactured metals Computer Methods in Applied Mechanics and Engineering https://doi.org/10.1016/j.cma.2020.113471 Publication ID: 66937

Ajit Desai, P.V. Sudhi, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2020). Domain Decomposition of Time-Dependent Stochastic PDEs https://doi.org/10.2172/1835957 Publication ID: 72186

Brandon Robinson, Leandro da Costa, Dominique Poirel, Chris Pettit, Mohammad Khalil, Abhijit Sarkar, (2020). Aeroelastic oscillations of a pitching flexible wing with structural geometric nonlinearities: Theory and numerical simulation Journal of Sound and Vibration https://doi.org/10.1016/j.jsv.2020.115389 Publication ID: 66907

Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2020). Inference Of Model Sparsity In Nonlinear Dynamics Using Noisy Data https://www.osti.gov/servlets/purl/1818438 Publication ID: 74719

Ajit Desai, P.V. Sudhi, Mohammad Khalil, Chris Pettit, Dominique Poirel, Sarkar Sarkar, Abhijit Abhijit, (2020). Domain Decomposition of Stochastic PDEs: Three-dimensional and Time-dependent Systems https://www.osti.gov/servlets/purl/1818439 Publication ID: 74720

Sudhi Sharma, Ajit Desai, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2020). Domain Decomposition of Stochastic PDEs: Three-dimensional and Time-dependent Systems https://www.osti.gov/servlets/purl/1811967 Publication ID: 74308

Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2020). Inference of model sparsity in nonlinear dynamics using noisy data https://www.osti.gov/servlets/purl/1811968 Publication ID: 74309

Ann Dallman, Mohammad Khalil, Kaus Raghukumar, Craig Jones, Jeremy Kasper, Christopher Flanary, Grace Chang, Jesse Roberts, (2020). Wave Data Assimilation In Support Of Wave Energy Converter Power Prediction: Yakutat Alaska Case Study https://www.osti.gov/servlets/purl/1781765 Publication ID: 73398

Mohammad Khalil, (2020). An Overview of Sequential Data Assimilation for Nonlinear Dynamical Systems https://www.osti.gov/servlets/purl/1768352 Publication ID: 72820

Ann Dallman, Mohammad Khalil, Kaus Raghukumar, Craig Jones, Jeremy Kasper, Christopher Flanary, Grace Chang, Jesse Roberts, (2020). Wave data assimilation in support of wave energy converter powerprediction: Yakutat, Alaska case study Proceedings of the Annual Offshore Technology Conference https://doi.org/10.4043/30613-MS Publication ID: 72803

Mohammad Khalil, (2019). Sequential Data Assimilation for Nonlinear Dynamical Systems https://www.osti.gov/servlets/purl/1646231 Publication ID: 66191

Mohammad Khalil, (2019). Sparse Bayesian learning of nonlinear physics-based models https://www.osti.gov/servlets/purl/1646113 Publication ID: 65872

Reese Jones, Brad Boyce, A. Frankel, Nathan Heckman, Mohammad Khalil, Jakob Ostien, Francesco Rizzi, Kousuke Tachida, G. Teichert, J. Templeton, (2019). Uncertainty Quantification of Microstructural Material Variability Effects https://doi.org/10.2172/1814062 Publication ID: 65085

F. Rizzi, Mohammad Khalil, Reese Jones, J. Templeton, Jakob Ostien, B. Boyce, (2019). Bayesian modeling of inconsistent plastic response due to material variability Computer Methods in Applied Mechanics and Engineering https://doi.org/10.1016/j.cma.2019.05.012 Publication ID: 64718

Brandon Robinson, Dominique Poirel, Chris Pettit, Mohammad Khalil, Abhijit Sarkar, (2019). Aeroelastic oscillations of a pitching cantilever with structural and aerodynamic nonlinearities https://www.osti.gov/servlets/purl/1641578 Publication ID: 70378

Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2019). Inferring model sparsity in nonlinear fluid-structure interaction systems using noisy wind-tunnel data https://www.osti.gov/servlets/purl/1641580 Publication ID: 70380

Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2019). Sparse learning of nonlinear physics-based models https://www.osti.gov/servlets/purl/1641097 Publication ID: 69633

Mohammad Khalil, Cosmin Safta, (2019). A Parallel Transitional MCMC for Robust PDF Sampling – New UQTk Capability https://www.osti.gov/servlets/purl/1645251 Publication ID: 68541

Han Lu, Jiefu Chen, Xuqing Wu, Xin Fu, Mohammad Khalil, Cosmin Safta, Yueqin Huang, (2019). Sparse PCE surrogate assisted inversion algorithm for ultra-deep electromagnetic resistivity logging-while-drilling data https://www.osti.gov/servlets/purl/1639627 Publication ID: 67856

Reese Jones, Coleman Alleman, A. Frankel, Mohammad Khalil, Nathan Heckman, Brad Boyce, Greg Teichert, (2019). Modeling material variability with uncertainty quantification and machine learning techniques https://www.osti.gov/servlets/purl/1648628 Publication ID: 67524

Kevin Carlberg, Sofia Guzzetti, Mohammad Khalil, Khachik Sargsyan, (2019). Large-Scale Uncertainty Propagation via Overlapping Domain Decomposition https://www.osti.gov/servlets/purl/1602394 Publication ID: 67151

Mohammad Khalil, (2019). Data assimilation for joint state and parameter estimation: nonlinear filtering https://www.osti.gov/servlets/purl/1598433 Publication ID: 65152

Ann Dallman, Mohammad Khalil, Craig Jones, Jeremy Kasper, Christopher Flanary, Jesse Roberts, (2018). A Case Study of Wave Energy Forecast Improvement Using Data Assimilation https://www.osti.gov/servlets/purl/1761389 Publication ID: 60650

Reese Jones, Francesco Rizzi, J. Templeton, Jakob Ostien, Coleman Alleman, Mohammad Khalil, A. Frankel, Nathan Heckman, Brad Boyce, Greg Teichert, Krishna Garikipati, (2018). Modeling material variability with uncertainty quantification and machine learning techniques https://www.osti.gov/servlets/purl/1592993 Publication ID: 59782

Reese Jones, Francesco Rizzi, J. Templeton, Jakob Ostien, Coleman Alleman, Mohammad Khalil, A. Frankel, Nathan Heckman, Brad Boyce, Krishna Garikipati, Greg Teichert, (2018). Modeling material variability with uncertainty quantification and machine learning techniques https://www.osti.gov/servlets/purl/1592995 Publication ID: 59784

Reese Jones, Francesco Rizzi, J. Templeton, Jakob Ostien, Coleman Alleman, Mohammad Khalil, A. Frankel, Nathan Heckman, Brad Boyce, K Garikipati, G Teichert, (2018). Modeling material variability with uncertainty quantification and machine learning techniques https://www.osti.gov/servlets/purl/1592996 Publication ID: 59785

Ann Dallman, Mohammad Khalil, Kaus Raghukumar, Jeremy Kasper, Craig Jones, Jesse Roberts, (2018). Improved Wave Energy Production Forecasts for Smart Grid Integration https://doi.org/10.2172/1531318 Publication ID: 59305

Mohammad Khalil, Habib Najm, (2018). Probabilistic inference of reaction rate parameters from summary statistics Combustion Theory and Modelling https://doi.org/10.1080/13647830.2017.1370557 Publication ID: 55233

Ajit Desai, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2018). Domain Decomposition of Stochastic PDEs – New Developments https://www.osti.gov/servlets/purl/1806663 Publication ID: 63314

Ajit Desai, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2018). Scalable domain decomposition solvers for stochastic PDEs in high performance computing Computer Methods in Applied Mechanics and Engineering https://doi.org/10.1016/j.cma.2017.09.006 Publication ID: 47213

Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2018). Data-driven model reduction using sparse Bayesian learning: Application to nonlinear aeroelastic system https://www.osti.gov/servlets/purl/1525934 Publication ID: 62475

Rimple Sandhu, Chris Pettit, Mohammad Khalil, Abhijit Sarkar, Dominique Poirel, (2018). Automatic relevance determination priors in Bayesian model selection: Application to nonlinear fluid-structure interaction systems https://www.osti.gov/servlets/purl/1524946 Publication ID: 62362

Philippe Bisaillon, Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2018). Bayesian Selection of Optimal Physics-Based Model and Modeling Error for Nonlinear Dynamical Systems https://www.osti.gov/servlets/purl/1524947 Publication ID: 62363

Brandon Robinson, Rimple Sandhu, Mohammad Khalil, Dominique Poirel, Chris Pettit, Abhijit Sarkar, (2018). Global sensitivity analysis for nonlinear aeroelastic vibrations of a cantilever https://www.osti.gov/servlets/purl/1524948 Publication ID: 62364

Simple Sandhu, Chris Pettit, Mohammad Khalil, Abhijit Sarkar, Dominique Poirel, (2018). Bayesian Model Reduction using Automatic Relevance Determination (ARD): Observations and Improvements https://www.osti.gov/servlets/purl/1510685 Publication ID: 61752

Mohammad Khalil, Francesco Rizzi, A. Frankel, Coleman Alleman, J. Templeton, Jakob Ostien, Brad Boyce, Reese Jones, (2018). Embedded Model Error and Bayesian Model Selection for Material Variability https://www.osti.gov/servlets/purl/1508918 Publication ID: 61655

Coleman Alleman, Brad Boyce, A. Frankel, Nathan Heckman, Mohammad Khalil, Krishna Garikipati, Reese Jones, (2018). Modeling material variability with uncertainty quantification and machine learning techniques https://www.osti.gov/servlets/purl/1504569 Publication ID: 61315

Mohammad Khalil, (2018). Data-Driven Bayesian Model Selection: Parameter Space Dimension Reduction using Automatic Relevance Determination Priors https://www.osti.gov/servlets/purl/1806477 Publication ID: 58735

Mohammad Khalil, Erik Brubaker, Nathan Hilton, Matthew Kupinski, Christopher MacGahan, Peter Marleau, (2017). Null-hypothesis testing using distance metrics for verification of arms-control treaties 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, NSS/MIC/RTSD 2016 https://doi.org/10.1109/NSSMIC.2016.8069935 Publication ID: 48081

Habib Najm, Tiernan Casey, Mohammad Khalil, (2017). Parameter Estimation in Chemical Systems https://www.osti.gov/servlets/purl/1465086 Publication ID: 57996

Rimple Sandhu, Leandro Rocha da Costa, Brandon Robinson, Anton Matachniouk, Sandip Chajjed, Philippe Bisaillon, Ajit Desai, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2017). An integrated approach for fluid-structure interaction: uncertainty quantifi%0Ccation Bayesian inference scalable algorithms for high performance computing and wind tunnel testing https://www.osti.gov/servlets/purl/1507263 Publication ID: 57363

Ajit Desai, Philippe Bisaillon, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2017). A Scalable Sampling-Free Nonlinear State Estimation Algorithm for Large-Scale Models and Data Sets using High Performance Computing https://www.osti.gov/servlets/purl/1507264 Publication ID: 57364

Brandon Robinson, Leandro Rocha da Costa, Dominique Poirel, Chris Pettit, Mohammad Khalil, Abhijit Sarkar, (2017). Large amplitude aeroelastic oscillations of a cantilever with structural and aerodynamic nonlinearities: Theory and wind tunnel test https://www.osti.gov/servlets/purl/1507267 Publication ID: 57368

Mohammad Khalil, Jina Lee, Maher Salloum, (2017). Predictive Modeling of Wavelet Coefficients for Physical Processes https://www.osti.gov/servlets/purl/1507268 Publication ID: 57369

Rimple Sandhu, Chris Pettit, Mohammad Khalil, Abhijit Sarkar, Dominique Poirel, (2017). Bayesian Model Selection in Continuous Model Domain Using Automatic Relevance Determination with Applications to Nonlinear Aeroelasticity https://www.osti.gov/servlets/purl/1507087 Publication ID: 57370

Philippe Bisaillon, Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2017). Colored Process Noise in Nonlinear Aeroelastic Systems https://www.osti.gov/servlets/purl/1507086 Publication ID: 57371

Habib Najm, Khachik Sargsyan, Xun Huan, Mohammad Khalil, Layal Hakim, Joseph Oefelein, Guilhem Lacaze, Zachary Vane, (2017). Bayesian Estimation of Model Error in Physical Systems https://www.osti.gov/servlets/purl/1462640 Publication ID: 57594

Habib Najm, Tiernan Casey, Mohammad Khalil, (2017). Statistical Inference given Summary Statistics in Chemical Models https://www.osti.gov/servlets/purl/1506217 Publication ID: 57004

Tiernan Casey, Mohammad Khalil, Habib Najm, (2017). Inference of H2O2 thermal decomposition rate parameters from experimental statistics https://www.osti.gov/servlets/purl/1456745 Publication ID: 56074

Mohammad Khalil, (2017). Data assimilation: nonlinear filtering https://www.osti.gov/servlets/purl/1456722 Publication ID: 56093

Habib Najm, Khachik Sargsyan, Xun Huan, L Hakim, Mohammad Khalil, Joseph Oefelein, Guilhem Lacaze, Zachary Vane, (2017). Model Error and Statistical Calibration of https://www.osti.gov/servlets/purl/1426633 Publication ID: 55340

Mohammad Khalil, (2017). Data-Driven Bayesian Model Selection: Parameter Space Dimension Reduction using Automatic Relevance Determination Priors https://www.osti.gov/servlets/purl/1456336 Publication ID: 55482

Riccardo Malpica Galassi, Mauro Valorani, Habib Najm, Cosmin Safta, Mohammad Khalil, Pietro Ciottoli, (2017). Chemical model reduction under uncertainty Combustion and Flame https://www.osti.gov/servlets/purl/1268977 Publication ID: 44045

Tiernan Casey, Mohammad Khalil, Habib Najm, (2017). Inference of H2O2 thermal decomposition rate parameters from experimental statistics 10th U.S. National Combustion Meeting https://www.osti.gov/servlets/purl/1456538 Publication ID: 55843

Mohammad Khalil, K. Chowdhary, Cosmin Safta, Khachik Sargsyan, Habib Najm, (2017). Inference of reaction rate parameters based on summary statistics from experiments Proceedings of the Combustion Institute https://doi.org/10.1016/j.proci.2016.08.058 Publication ID: 50088

Joshua Bauer, Jaideep Ray, Mohammad Khalil, (2016). SUMMIT Wildfire App: A SUMMIT application leveraging new R&D capabilities https://www.osti.gov/servlets/purl/1428157 Publication ID: 47987

Mohammad Khalil, Erik Brubaker, Nathan Hilton, Matthew Kupinski, Christopher MacGahan, Peter Marleau, (2016). Null-Hypothesis Testing Using Distance Metrics for Verification of Arms-Control Treaties https://doi.org/10.1109/NSSMIC.2016.8069935 Publication ID: 47572

Kevin Carlberg, Shara Guzzetta, Mohammad Khalil, Khachik Sargsyan, (2016). Uncertainty Propagation in (large-scale) Networks via Domain Decomposition https://www.osti.gov/servlets/purl/1393766 Publication ID: 52227

Habib Najm, Khachik Sargsyan, Xun Huan, Mohammad Khalil, Layal Hakim, Joseph Oefelein, Guilhem Lacaze, Zachary Vane, (2016). Uncertainty Quantification with Model Error https://www.osti.gov/servlets/purl/1397104 Publication ID: 52533

Jaideep Ray, Sophia Lefantzi, Joshua Bauer, Mohammad Khalil, Andrew Rothfuss, Katherine Cauthen, Patrick Finley, Halley Smith, (2016). Online mapping and forecasting of epidemics using open-source indicators https://doi.org/10.2172/1562406 Publication ID: 52362

Mohammad Khalil, Dominique Poirel, Abhijit Sarkar, (2016). Bayesian analysis of the flutter margin method in aeroelasticity Journal of Sound and Vibration https://doi.org/10.1016/j.jsv.2016.07.016 Publication ID: 50089

Rebecca Harmon, Mohammad Khalil, Habib Najm, Cosmin Safta, (2016). Convergence study in global sensitivity analysis https://doi.org/10.2172/1561829 Publication ID: 51622

Jonathan Wang, Habib Najm, Mohammad Khalil, Jonathan Freund, (2016). Global Sensitivity Analysis for Fields: A Demonstration for Hydrogen Autoignition https://www.osti.gov/servlets/purl/1373231 Publication ID: 51267

Rebecca Harmon, Habib Najm, Mohammad Khalil, (2016). A Convergence Study in Global Sensitivity Analysis (presentation) https://www.osti.gov/servlets/purl/1372190 Publication ID: 51111

Rebecca Harmon, Habib Najm, Mohammad Khalil, (2016). A Convergence Study in Global Sensitivity Analysis https://www.osti.gov/servlets/purl/1372191 Publication ID: 51112

Mohammad Khalil, Kamaljit Chowdhary, Cosmin Safta, Khachik Sargsyan, Habib Najm, (2016). Inference of reaction rate parameters based on summary statistics from experiments https://doi.org/10.1016/j.proci.2016.08.058 Publication ID: 51426

Ajit Desai, Mohammad Khalil, Abhijit Sarkar, Chris Pettit, Dominique Poirel, (2016). Domain Decomposition of Stochastic PDEs: High Resolution Computational Mesh with Large Stochastic Dimension https://www.osti.gov/servlets/purl/1369003 Publication ID: 50443

Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2016). Efficient Computation of Evidence in Bayesian Inference using High Performance Computing https://www.osti.gov/servlets/purl/1369004 Publication ID: 50444

Philippe Bisaillon, Ajit Desai, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar, (2016). A Scalable Sampling-Free Non-Gaussian Data Assimilation Algorithm for Large Scale Computational Models using Large Data Sets https://www.osti.gov/servlets/purl/1369005 Publication ID: 50445

Joseph Oefelein, Layal Hakim, Guilhem Lacaze, Mohammad Khalil, Khachik Sargsyan, Habib Najm, (2016). Parameter Estimation and Uncertainty Quantification in Turbulent Combustion Computations https://www.osti.gov/servlets/purl/1366683 Publication ID: 49208

Mohammad Khalil, Habib Najm, Kamaljit Chowdhary, Cosmin Safta, Khachik Sargsyan, (2016). Probabilistic Inference of Model Parameters and Missing High-Dimensional Data Based on Summary Statistics https://www.osti.gov/servlets/purl/1618243 Publication ID: 49171

Mohammad Khalil, (2015). Hybrid approach to surrogate modeling https://www.osti.gov/servlets/purl/1324416 Publication ID: 45416

Habib Najm, Khachik Sargsyan, Kamaljit Chowdhary, Mohammad Khalil, (2015). Computational Statistical Inverse Problems with Sparse or Missing Data https://www.osti.gov/servlets/purl/1312660 Publication ID: 45189

Connie Chen, Habib Najm, Mohammad Khalil, (2015). Global Sensitivity Analysis for Chemical Kinetics of Hydrocarbon Combustion [Poster] https://www.osti.gov/servlets/purl/1339328 Publication ID: 44644

Connie Chen, Habib Najm, Mohammad Khalil, (2015). Global Sensitivity Analysis for Chemical Kinetics of Hydrocarbon Combustion [PowerPoint] https://www.osti.gov/servlets/purl/1339331 Publication ID: 44647

Jiankun Shao, Mohammad Khalil, Habib Najm, (2014). uncertainty quantification https://www.osti.gov/servlets/purl/1496102 Publication ID: 37713

Mohammad Khalil, (2014). CRF Webpage https://www.osti.gov/servlets/purl/1695598 Publication ID: 40407

Showing Results. Show More Publications