Sandia LabNews

Material found in house paint may spur technology revolution


Sandia developed new device to more efficiently process information

processor array
POWER PERFORMER — An array of processors coated with titanium oxide has the potential to revolutionize technologies like voice recognition, image processing and autonomous driving. (Photo by Alec Talin)

The development of a new method to make non-volatile computer memory may have unlocked a problem that has been holding back machine learning and has the potential to revolutionize technologies like voice recognition, image processing and autonomous driving.

A team from Sandia, working with collaborators from the University of Michigan, published a paper in the peer-reviewed journal Advanced Materials that details a new method to imbue computing chips that power machine-learning applications with more processing power by using a common material found in house paint.

“Titanium oxide is one of the most commonly made materials. Every paint you buy has titanium oxide in it. It’s cheap and nontoxic,” said Sandia materials scientist Alec Talin. “It’s an oxide, there’s already oxygen there. But if you take a few out, you create what are called oxygen vacancies. It turns out that when you create oxygen vacancies, you make this material electrically conductive.”

Those oxygen vacancies can now store electrical data, giving almost any device more computing power. Alec and his team create the oxygen vacancies by heating a computer chip with a titanium oxide coating above 302 degrees F (150 degrees C), separating some of the oxygen molecules from the material using electrochemistry.

“When it cools off, it stores any information you program it with,” Alec said.

Energy efficiency

Right now, computers generally work by storing data in one place and processing that data in another place. That means computers constantly have to transfer data from one place to the next, wasting energy and computing power.

Yiyang Li — a former Truman Fellow at Sandia, now an assistant professor of materials science at the University of Michigan — led the work and helped author the paper. He explained how their process has the potential to completely change how computers work.

“What we’ve done is make the processing and the storage at the same place,” Li said. “What’s new is that we’ve been able to do it in a predictable and repeatable manner.”

A boost for machine learning

Both Li and Alec see the use of oxygen vacancies as a way to help machine learning overcome a big obstacle holding it back right now — power consumption.

“If we are trying to do machine learning, that takes a lot of energy because you are moving it back and forth, and one of the barriers to realizing machine learning is power consumption,” Li said. “If you have autonomous vehicles, making decisions about driving consumes a large amount of energy to process all the inputs. If we can create an alternative material for computer chips, they will be able to process information more efficiently, saving energy and processing a lot more data.”

Everyday impact

Alec sees the potential in the performance of everyday devices.

“Think about your cell phone,” he said. “If you want to give it a voice command, you need to be connected to a network that transfers the command to a central hub of computers that listen to your voice and then send a signal back telling your phone what to do. Through this process, voice recognition and other functions happen right in your phone.”

Alec said the team is working on refining several processes and testing the method on a larger scale. The project is funded through Sandia’s Laboratory Directed Research and Development program.