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Abstract

We give an algorithm for triangulating n�vertex polyg�
onal regions �with holes� so that no angle in the �nal
triangulation measures more than ���� The number of
triangles in the triangulation is only O�n�� improving
a previous bound of O�n��� and the worst�case running
time is O�n log� n�� The basic technique used in the
algorithm� recursive subdivision by disks� is new and
may have wider application in mesh generation� We
also report on an implementation of our algorithm�

�� Introduction

The triangulation of a two�dimensional polygonal re�
gion is a fundamental problem arising in computer
graphics� physical simulation� and geographical infor�
mation systems� Most applications demand not just
any triangulation� but rather one with triangles satis�
fying certain shape and size criteria ��	� In order to
satisfy these criteria� one typically allows triangles to
use new vertices� called Steiner points� that are not
vertices of the input polygon� The number of Steiner
points should not be excessive� however� as this would
increase the running time of computations�

Throughout the application areas named above� it is
generally true that large angles �that is� angles close to
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�� are undesirable� Babu
ska and Aziz ��	 justi�ed this
aversion for one important application area by prov�
ing convergence of the �nite element method ���	 as
triangle sizes diminish� so long as the maximum angle
is bounded away from �� They also gave an example
in which convergence fails when angles grow arbitrar�
ily �at� �An elementary example in which large angles
spoil convergence is Schwarz
s paradox ���	��

Any bound smaller than � implies convergence in
Babu
ska and Aziz
s model� but a bound of ��� on the
largest angle has special importance� First of all� any
stricter non�varying requirement would also bound the
smallest angle away from zero� for some inputs �such
as a long� skinny rectangle� this forces the triangula�
tion to contain a number of triangles dependent on the
geometry�not just on the combinatorial complexity�
of the input� Second� a nonobtuse triangulation is
necessarily a �constrained� Delaunay triangulation ��	�
Third� a nonobtuse triangulation admits a perpendicu�
lar planar dual � that is� an embedding in which dual
edges cross at right angles� Such an embedding is con�
venient for the ��nite volume� method ���	� Finally�
a nonobtuse triangulation has better numerical proper�
ties ��� ��	� In particular� Vavasis ���	 recently proved
that for �nite element problems with physical char�
acteristics that vary enormously over the domain� a
nonobtuse mesh implies faster convergence of a certain
numerical method�

These properties have established nonobtuse triangu�
lation as a desirable goal in �nite element mesh gener�
ation� Several heuristic methods have been developed
to compute nonobtuse triangulations ��� ��	� Baker�
Grosse� and Ra�erty ��	 gave the �rst provably�correct
algorithm� Their algorithm also bounds the smallest
angle away from zero� and hence necessarily uses a num�
ber of triangles dependent upon input geometry� Melis�
saratos and Souvaine ���	 gave another algorithmof this
type�

From the point of view of theoretical computer sci�
ence� however� it is important to determine the inher�
ent complexity of nonobtuse triangulation� apart from
no�small�angle triangulation� Bern and Eppstein ��	 de�
vised a nonobtuse triangulation algorithm using O�n��
triangles� where n is the number of vertices of the input
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Figure �� �a� Disk packing� �b� Induced small polygons� �c� Final triangulation�

domain� This result demonstrates a fundamental com�
plexity separation between bounding large angles and
bounding small angles� Bern� Dobkin� and Eppstein ��	
later improved this bound to O�n����� for convex poly�
gons�

In this paper� we improve these bounds to linear� us�
ing an entirely di�erent�and more widely applicable�
technique� Aside from sharpening the theory� our
new algorithm boasts other advantages� it parallelizes�
thereby placing nonobtuse triangulation in the class
NC� and it does not use axis�parallel grids� so the out�
put has no preferred directions� Our algorithm also
improves results of Bern et al� ��	 on no�large�angle tri�
angulation� The superseded results include an algo�
rithm guaranteeing a maximum angle of at most ����
that uses O�n logn� triangles for simple polygons and
O�n���� triangles for polygons with holes�

�� Overview of the Algorithm

Our algorithm consists of two stages� The �rst stage
�Section �� packs the domain with non�overlapping
disks� tangent to each other and to sides of the domain�
The disk packing is such that each region not covered
has at most four sides �either straight sides or arcs�� as
shown in Figure ��a�� The algorithm then adds edges
�radii� between centers of disks and points of tangency
on their boundaries� thereby dividing the domain into
small polygons as shown in Figure ��b��

The second stage �Section �� triangulates the small
polygons using Steiner points located only interior to
the polygons or on the domain boundary� Restricting
the location of Steiner points ensures that triangulated

small polygons �t together so that neighboring trian�
gles share entire sides� Figure ��c� shows the resulting
nonobtuse triangulation�

This algorithm is circle�based� rather than grid�based
like the previous polynomial�size nonobtuse triangula�
tion algorithm ��	� Analogously� the problem of no�
small�angle triangulation has grid�based ���	 and circle�
based ���	 solutions� In retrospect� circle�based algo�
rithms o�er a more natural way to bound angles� as
well as meshes more intrinsic to the input domain�
This conclusion is supported by two more examples�
In the second stage of this paper
s algorithm� certain
misshapen small polygons cause technical di�culties�
these are neatly solved by packing in more disks� �One
of these additional disks is the second from the left along
the bottom side of Figure ��b��� In other recent work�
Mitchell uses the �angle bu�ering� property of circles
to give a triangulation� restricted to use only interior
Steiner points� with linear size and largest angle nearly
as small as possible ���	�

�� Disk Packing

In this section� we describe the �rst stage of the algo�
rithm� Let P denote the input� a region of the plane
bounded by a set of disjoint simple polygons with a to�
tal of n vertices� An arc�gon is a simple polygon with
sides that are arcs of circles� The circles may have var�
ious radii� including in�nity �which implies a straight
side��

Throughout the disk�packing stage� we make use of
the generalized Voronoi diagram �GVD�� which is de�
�ned by proximity to both edges and vertices� The in�
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Figure �� Adding disks at �a� convex and �b� concave cor�

ners of polygonal region P �

terior points of polygonal region P are divided into cells
according to the nearest vertex of P � or the nearest edge
�viewing each edge as an open segment�� The resulting
partition consists of a set of bisectors� either line seg�
ments or parabolic arcs� it is essentially the same as the
medial axis ���	� The GVD can be similarly de�ned for
arc�gons� or more generally for arbitrary collections of
points� segments� and circular arcs� The GVD of a col�
lection of n points� segments� and arcs can be computed
in time O�n logn� ���	�

The disk�packing stage consists of three smaller steps�
First� one or two disks are placed at each vertex of the
polygon� Second� holes in the polygon are connected
to the boundary by adding disks tangent to two holes�
or to a hole and the outer boundary� Third� disks are
added to the as�yet�uncovered regions �called remainder
regions�� recursively reducing their complexity until all
have at most four sides�

Disks at Corners� The �rst step preprocesses P so
that we need only consider arc�gons with angle � at each
vertex� At every convex vertex of P � we add a small
disk tangent to both edges� as shown in Figure ��a�� At
every concave vertex of P � we add two disks of equal
radii� tangent to the edges� and tangent to the angle
bisector at the corner� as shown in Figure ��b�� We
choose radii small enough that disks lie within P � and
none overlap �that is� intersect at interior points�� This
step isolates a small �� or ��sided remainder region at
each corner of P � The large remainder region is an arc�
gon of �n � r � O�n� sides� where n is the number of
vertices of P and r is the number of concave corners�

The �rst step can be implemented in time O�n logn�
using the GVD of P � By checking the adjacencies of
GVD cells� we can determine the nearest non�incident
edge for each vertex v of P � one�eighth this distance
gives a safe radius for the disks next to v� �Our imple�
mentation actually uses some other choices of radii to
reduce output size��

Connecting Holes� The second step connects polyg�
onal holes to the outer boundary by repeatedly adding
a disk tangent to two or more connected components
of the boundary� In this step� previous disks touching

Figure �� A disk tangent to three edges of an arc�gon is

centered at a vertex of the GVD�

a hole boundary are considered to be part of the hole�
At the end� the large remainder region is bounded by a
simply�connected arc�gon with O�n� sides� Every cor�
ner of this arc�gon has angle �� since each results from
a tangency�

The second step can be implemented in time
O�n log� n�� We use a data structure that answers
queries of the following form� given a query point p�
which data object �vertex� edge� or disk� will be hit
�rst by an expanding circle tangent to a vertical line
through p �tangent at p and to the left of the line�� Such
a query can be answered using Fortune
s ��map ���	� a
sort of warped Voronoi diagram�

The initial set of data objects includes the edges� ver�
tices� and disks attached to the outer boundary of the
input polygon� The �rst query point is the leftmost
point on a hole� The answer determines a disk D en�
tirely contained within the polygon� touching both the
hole and the outer boundary� Disk D is inserted into
the query data structure� along with the vertices� edges
and disks of the hole� Each subsequent query is per�
formed using the leftmost point of all remaining holes�
Altogether� the queries yield a set of disks connecting
all holes and the exterior of the polygon�

For a static set of data objects� the ��map can be
built in time O�n logn� ���	� and standard planar sub�
division search techniques ���	 yield an O�logn� query
time� In our case� the set of data objects is not �xed�
since edges and a disk are added following each query� A
trick due to Bentley and Saxe ��	 allows dynamic inser�
tions to the query structure� with query time O�log� n�
and amortized insert time O�log� n�� The trick is to di�
vide the n data objects amongO�logn� data structures�
one for each bit in the binary representation of n� A
query searches all data structures inO�log� n� time� An
insertion rebuilds all the data structures corresponding
to bits that change� The total time required for n in�
sertions is O�n log� n��

Reducing to �� and ��Sided Remainder Regions�
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After the �rst two steps� there is one simply�connected
remainder region A with O�n� sides� and O�n� remain�
der regions in corners with three or four sides� The �nal
step of the disk�packing stage recursively subdivides A
by adding disks� The result will be a linear number of
remainder regions of three and four sides�

To subdivide arc�gon A� we add a disk tangent to
three of its sides� Such a disk divides the region enclosed
by the arc�gon into four pieces� the disk itself and three
smaller regions bounded by arc�gons� We choose a disk
tangent to three sides of A� not all of them consecutive�
thereby ensuring that each of the three smaller arc�gons
has at most n � � sides� As shown in Figure �� a disk
tangent to three sides of an arc�gon must be centered
at a vertex of the GVD� Since A is simply connected�
the edges of its GVD form a tree� a fact that will be
useful in bounding the running time�

Lemma �� It is possible to reduce all remainder
regions to at most � sides� by packing O�n� non�
overlapping disks into arc�gon A�

Proof� Each vertex of the GVD corresponds to a disk
tangent to three sides of A� If A has at least �ve sides�
then there is a vertex v of the GVD that is adjacent to
two non�leaf vertices of the GVD� a disk centered at v is
tangent to three sides of A that are not all consecutive�

Now let d�n� be the maximum number of disks
needed to reduce an n�sided arc�gon to �� and ��sided
remainder regions� We prove d�n� � n�� by induction
on n� The base cases are d��� � � and d��� � ��

For the inductive step� notice that adding one disk
produces three new arc�gons� �We can simply ignore
extra tangencies in the degenerate case of four or more
tangencies�� Suppose the new arc�gons have k� l�m
sides� respectively� with � � k � l � m� Since we
are choosing non�consecutive sides� m � n� Counting
� for the added disk� we have that d�n� � � � d�k� �
d�l� � d�m�� Since the disk divides three sides� and is
itself divided in three places� we have k� l�m � n���

First suppose k � �� Since we are choosing non�
consecutive sides� l � �� so

d�n� � � � d��� � d�l� � d�m�

� � � � � �l � �� � �m � ��

� �l �m�� � � �n� ��� � � n� ��

When k � �� we have d�n� � ��d�k��d�l��d�m�� By
induction� d�n� � �� �k� ��� �l� ��� �m� ��� which
is equal to �k � l �m� � �� � �n � ��� �� � n� ��

Finally we comment on running time� Any tree con�
tains a vertex� called a centroid � whose removal leaves
subtrees of size at most two�thirds the original size� By

Figure �� Remainder regions with vertices of P �

choosing a disk centered at a centroid of the GVD of A�
we split A into arc�gons A�� A�� and A�� We imagine
splitting A�� A�� and A� in parallel� so that altogether
there will be O�logn� splitting stages� each involving a
set of arc�gons of total complexity O�n�� If we recom�
pute GVD
s from scratch after each splitting stage� we
obtain total time O�n log� n�� This can be improved to
O�n logn� by rebuilding GVD
s in linear time� using an
adaptation of the algorithm due to Aggarwal et al� ��	�

�� Triangulating the Pieces

We now describe the second stage of our algorithm� At
this point� polygonal region P has been partitioned into
disks and remainder regions with three or four sides�
either straight or circular arcs� Each circular arc of a
remainder region R is naturally associated with a pie�
shaped sector� namely the convex hull of the arc and
the center of the circle containing the arc� We denote
the union of R and its associated sectors by R�� These
augmented remainder regions de�ne a decomposition
of P into simple polygons with disjoint interiors� In
an augmented remainder region� we retain vertices at
circle tangencies� vertices such as these� at which the
angle measure �� are called subdivision points�

In this section� we show how to triangulate each R�

region� All Steiner points will lie either on straight
sides of R �that is� along P 
s boundary� or interior to
R�� Thus we never place Steiner points on the radii
bounding sectors� and triangulated R� regions will �t
together at the end� Our triangulation method is given
in three cases� remainder regions with vertices of P �
three�sided remainder regions� and four�sided remain�
der regions� The �rst two cases are easy� but the last is
quite intricate� In all cases� triangulating a single R�

region takes O��� time� so altogether the running time
of the second stage is O�n��

Remainder Regions with Vertices of P � Every
vertex of P was isolated by one or two disks in the �rst
step of the algorithm� The resulting regions R� can be
triangulated with at most four right triangles� as shown
in Figure �� by adding edges from the disk centers to
the points of tangency and the vertex of P �
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Figure �� Three�sided remainder regions	 �a� with a straight

side
 �b� with only �nite�radius arcs�

Three�Sided Remainder Regions� A three�sided
remainder region R without a vertex of P is bounded
by three circular arcs� so that arcs meet tangentially at
the vertices of R� Here we are considering a straight
side to be an arc of an in�nitely large circle� We call
a Steiner point in an augmented remainder region R�

safe if it lies either interior to R� or on the boundary
of P �

Lemma �� If R is a three�sided remainder region�
then R� can be triangulated with at most six right
triangles� adding only safe Steiner points�

Proof� First assume that R has a straight side �nec�
essarily at most one�� and view R so that this straight
side forms a horizontal base� The augmented region R�

is a trapezoid with two vertical sides� and a subdivision
point p along its slanted top side� We cut perpendic�
ularly from p �that is� tangent to both arcs� across R
until we hit the base� and there add a safe Steiner point
s� We add edges from s to the centers of the arcs
 cir�
cles to divide R� into four right triangles� as shown in
Figure ��a��

Now assume all the sides of R are arcs of �nite ra�
dius� Notice that R� is a triangle with subdivided sides�
Moreover� the subdivision points along the sides of R�

are exactly the tangency points of the inscribed circle
of R�� �This follows from the fact that the inscribed
circle makes each corner of R� incident to two edges of
equal length�� So we add the circle
s center c and edges
from c to all the vertices around R�� dividing R� into
six right triangles� as shown in Figure ��b��

Four�Sided Remainder Regions� A four�sided re�
mainder region R is bounded by four circular arcs �pos�
sibly of in�nite radius� that meet tangentially at the
vertices of R� Lemma � states two interesting proper�
ties of these regions�

Lemma �� The arcs of R have total measure ��� The
vertices of R are cocircular�

c

Figure �� The good case for four�sided remainder regions�

Proof� If all arcs have �nite radius� then the sum of
the measures of the arcs of R is identical to the sum of
the measures of the angles at the corners of R�� For
straight sides� we imagine further augmenting R� with
�in�nite sectors� of angle ��

Next we show that the vertices are cocircular� Let
C� and C� be �nite�radius circles containing opposite
arcs of R� �Here notice that if R has two straight sides�
they must be opposite�� Assume the two lines that
are externally tangent to both C� and C� meet at a
point x� There exists an inversive transformation ����	�
pp� ������ of the projective plane that maps x to in�n�
ity and hence the two external tangent lines to parallel
lines� The transformed circles C�

� and C�
�� correspond�

ing to C� and C�� have equal size� so the vertices of
the transformed remainder region R� form an isosceles
trapezoid� It is easy to see that any isosceles trapezoid
has cocircular vertices� The inverse of the original in�
versive transformation maps the circle containing the
vertices of R� to a circle containing the vertices of R�

Now if we are lucky� the region R� can be trian�
gulated with �� right triangles� as shown in Figure ��
Here we have added the center c of the circle through
R
s vertices in order to form four kites �quadrilaterals
with two adjacent pairs of equal�length sides�� This tri�
angulation� however� can fail in two di�erent ways� ���
if one of the arcs of R measures more than � �a re�ex
arc�� then the angles at the corresponding vertex of R�

will measure more than ���� and ��� if center c lies
outside the convex hull of R� then it lies on the wrong
side of one of the chords and will introduce unwanted
intersections� Each of these di�culties will be handled
by adding yet another disk�

First assume R has a re�ex arc on circle C�� Add
another disk C�� tangent to C� and C� �the circle con�
taining the arc opposite C��� such that the center of
C� lies on the line joining the centers of C� and C��
The new disk C��unlike any of the disks used up un�
til this point�may overlap an old disk and produce
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Figure 
� �a� Mutual tangents and mutual chord meet at a point� �b� Triangulation�

*
4

3

2

1

C
C

C

C

C

Figure �� New circle C� breaks up a re�ex remainder region�

a self�intersecting remainder region� as shown in Fig�
ure �� Lemma � holds without modi�cation for self�
intersecting remainder regions� Region R�� formed as
before by adding the associated sectors to R� remains
a simple polygon with subdivision points on its sides�
speci�cally a triangle with three subdivisions on one
side and one on each of the others� The next lemma
shows how to triangulate R� with a generalization of
the method of Lemma ��

Lemma �� Let R be a self�intersecting four�sided re�
mainder region resulting from breaking up a re�ex four�
sided remainder region by the addition of C�� Then
R� can be triangulated with at most �� right triangles�
adding only safe Steiner points�

Proof� We may assume that all arcs of R have �nite
radius� If R has a straight edge� we can apply the trian�
gulation to a region with an in�nite sector attached to
the straight edge and then simply remove the resulting
in�nite strips�

Consider one of the arcs S next to C�� We claim that
the lines tangent to S at its endpoints and the mutual
chord of C� and its opposite arc all meet at a single
point p interior to R� as shown in Figure ��a�� This
claim allows the triangulation shown in Figure ��b��

Why is the claim true� For each of the three disks�
C�� the opposite disk� and the one with arc S�we

de�ne a power function� The power function of a
circle with center �xc� yc� and radius r is P �x� y� �
�x�xc����y�yc���r�� The power functions of two tan�
gent circles are equal along their mutual tangent line�
the power functions of two overlapping circles are equal
along a line containing their mutual chord� The point
p of the claim is the point at which all three power
functions are equal�

We now consider the second di�culty� Call a four�
sided remainder region R centered if the convex hull
of R contains the center c of the circle through R
s
vertices� and uncentered otherwise� Let the arc of R
with the longest chord lie along circle C�� and denote
the other circles by C�� C�� and C�� clockwise around
R� �Circles through in�nity handle the case of straight
sides�� Assume that the line through the centers of C�

and C� is vertical as in Figure �� If R is uncentered�
then c must lie below the chord on C��

Let t�� be the vertex of R at which C� and C� meet�
and similarly de�ne t��� t��� and t��� For a disk C� tan�
gent to both C� and C�� let SL �� SL�C

�� � be the circu�
lar arc with endpoints t�� and t�� that passes through
the points at which C� meets C� and C�� Lemma �
guarantees that such an arc exists� Similarly de�ne Sr �
Let cL and cr be the centers of the circles containing
SL and Sr � respectively�

Lemma �� There exists a disk C�
c tangent to C� and

C�� such that cL lies in the convex hull of the four points
of tangency around SL and cr lies in the convex hull of
the four points of tangency around Sr �

Proof� First let C� be the disk that is tangent to
C� and C� such that the center of C� lies on the line
through the centers of C� and C��

Centers cL and cr lie on a horizontal line through
the center of C�� hence outside C� and C�� But the
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Figure �� The trajectories of centers cL and cr as C
� sweeps�

requirements of the lemmamay be violated� because cr
may lie outside the chord t��t�� of Sr �if Sr has measure
less than �� or cL may lie outside the chord t��t�� of SL
�if SL has measure less than ��� We assert that both
of these bad conditions cannot occur at the same time�
Why� It su�ces to show that the sum of the measures
of SL and Sr is at least ��� Angle � t��t��t��� where
t�� is the point of tangency of C� and C�� measures at
least ���� because the arc of R on C� measures at most
�� And � t��t��t�� measures more than ���� because
the center of the circle through the vertices of R lies
below t��t��� Hence the remaining angles at t�� �those
subtended by points on SL and Sr� sum to less than ��

If neither bad condition occurs� then C� satis�es the
conditions of the lemma� and we are done� But if one of
the bad conditions does occur� then we sweep C� in the
direction that could cure the condition� while keeping
C� tangent to both C� and C�� If cr lies outside t��t���
then we sweep C� to the left in Figure �� the other case
is symmetrical�

During the leftward sweep� cr moves towards C�

along the perpendicular bisector of t��t�� and cL moves
towards C� along the perpendicular bisector of t��t��� as
shown in Figure �� These bisectors never intersect C��
so cL and cr can never lie outside their chords �t��t��
and t��t��� on C�� The chords of SL and Sr between
tangency points on C� are never the longest chords on
these arcs� so cL and cr also lie safely inside these chords
throughout the sweep�

As cr moves� it must pass through t��t�� and become
good� before it reaches C� and becomes bad� By the
arc�measure argument above� cr must cross inside t��t��
before cL crosses outside t��t��� Hence at some point
in the sweep� both cr and cL satisfy the conditions of
the lemma� and the C� at this point is C�

c �

Lemma � breaks up uncentered� non�re�ex remainder
regions� but unless C�

c coincides with the initial C
� in

the sweep� adding C�
c creates a new re�ex remainder

m

Figure ��� Triangulating R� when R is uncentered�

region� The following lemma �nesses this �nal di�culty
�shall we say circularity�� by triangulating both new
augmented regions at once�

Lemma �� Let R be a non�re�ex� uncentered� four�
sided remainder region� Then R� can be triangulated
into at most �� right triangles� adding only safe Steiner
points�

Proof� Again we may assume that all arcs of R have
�nite radius� as a solution to this case implies a trian�
gulation for the case of straight sides�

We start by adding the �centering� disk C�
c � guar�

anteed by Lemma �� As above� we denote the tangent
point of C�

c and C� by t�� and the tangent point of
C�
c and C� by t��� In addition to t�� and t��� we add
the following Steiner points� the centers c� and cr as�
sociated with arcs S� and Sr� and the midpoint m of
segment t��t��� See Figure ���

We triangulate by adding� all chords around S� and
Sr � lines from c� to pointm and to the centers of C�� C��
and C�� and lines from cr to point m and to the centers
of C�� C�� and C�� Finally we add an edge between the
center of C� and t�� and between the center of C� and
t���

Resulting triangles come in sets of four� each set tri�
angulating a kite by adding its diagonals� Hence all
triangles are right� �Notice that C�

c is treated some�
what di�erently than the other circles� we do not use
its center� Nevertheless the four triangles around m
form a kite� because t��t�� is the mutual chord of C

�
c �

S�� and S���

We have now completed the proof of our main theo�
rem�

Theorem �� An n�vertex polygonal region can be tri�
angulated with O�n� right triangles� in time O�n logn�
for simple polygons and O�n log� n� for polygons with
holes�
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�� Implementation

We implemented our algorithm within the Matlab en�
vironment ���	� The implementation di�ers somewhat
from the algorithmdescribed in the text� We use several
heuristics for disk placement so as to reduce the number
of triangles� Also we do not bother to compute general�
ized Voronoi diagrams� Rather we use a simple O�hn�
method to connect h holes to the boundary� and we
choose arbitrary disks touching three non�consecutive
sides� rather than disks centered at GVD centroids� To
keep the user entertained during the worst�case O�n��
running time� we display color�coded disks and trian�
gles as they are added� Finally� although our paper de�
scribes an algorithm for triangulation using only right
triangles� the implementation produces some acute tri�
angles� an example being the large downward�pointing
triangles in Figure ��c��

Experiments with a variety of polygonal regions show
that an n�vertex input typically produces about ��n
triangles� �The maximum observed was about ��n for
an input with n � � re�ex corners�� Since a �oating
point representation entails roundo�� some of the right
angles present in the nonobtuse triangulation become
slightly obtuse� The worst test case had an angle of
about �

�
� ����� radians �Matlab retains �� digits�� so

the implementation is fairly robust� which is somewhat
surprising given that our implementation often places
very small disks next to very large ones�

�� Parallelizing the Algorithm

We now sketch the �rst NC algorithm for nonobtuse
triangulation� We give a straightforward though rather
ine�cient algorithm� with parallel time O�log� n� and
processor requirement O�n��� Both time and processors
should be improvable� One bottleneck subproblem is
the computation of the GVD of circular arcs� see ���	
for the GVD of line segments�

Theorem �� An n�vertex polygonal region P �with
holes	 can be triangulated with O�n� right triangles in
O�log� n� time on O�n�� EREW PRAM processors�

Proof� Using O�n�� processors�one for each vertex�
edge pair�and timeO�logn�� we can compute the near�
est non�incident edge for each vertex and hence choose
appropriate radii for disks to pack into corners� The
second step� connecting holes� is trickier� We �rst com�
pute a minimum spanning tree �MST� of P 
s holes� by
this we mean the shortest set of line segments S� each
segment with both endpoints on the boundary of P �
such that the union of S and the exterior of P is a

connected subset of the plane� Using O�n�� proces�
sors and time O�logn�� we compute for each vertex the
nearest edge lying on a di�erent connected component
of P 
s boundary� We use this information to compute
distances between connected components� and add to
S the shortest component�joining line segment incident
to each component� This reduces the number of com�
ponents by at least a factor of two� so O�logn� such
merging steps su�ces to complete the computation of
S�

Now it is not hard to show that no point of the
plane is covered by more than O��� diameter disks of
segments in S� Hence there is a pairwise�disjoint set
of diameter disks of cardinality a constant fraction of
jSj ���	� It is not hard to �nd these disks in parallel
time O�logn� using separators� We repeat the process
of computing the MST �of the new connected compo�
nents� holes plus disks� and �nding a large indepen�
dent set of diameter disks� After O�logn� cycles�for
total time of O�log� n��we have reduced to a simply�
connected arc�gon�

The third step of the disk�packing stage uses the
generalized Voronoi diagram in order to �nd centroid
disks� Using O�n�� processors and time O�log� n�� we
can compute the GVD of a set of n circular arcs as fol�
lows� We compute the equal�distance curve �bisector�
for each pair of arcs� Then for each arc a� we com�
pute the piecewise�polynomial boundary of a
s cell re�
cursively by dividing the set of bisectors into two equal
halves and then merging the boundaries for each half�
Two piecewise�polynomial boundaries of O�n� pieces
can be merged in time O�logn� on n processors� Once�
the GVD has been computed� a centroid can be found in
time O�logn� by alternately removing leaves and merg�
ing degree�� paths�

Recall that the algorithm requires a �decomposition
tree� of centroid disks of height O�logn�� so by simply
recomputing the GVD after each centroid� we obtain an
overall time for the third disk�packing step of O�log� n��
Finally� the triangulation stage consists entirely of local
operations� so it is trivially parallelized�

�� Conclusion

We have presented a new algorithm for nonobtuse trian�
gulation of polygonal regions with holes� The number
of triangles produced is linear in the number of vertices
of the input� a signi�cant improvement over previous
methods� This is of course asymptotically optimal� re�
solving the question of the theoretical complexity of
nonobtuse triangulation of polygons�

One direction for further work is extending the al�
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gorithm to inputs more general than polygons with
holes� these inputs occur in modeling domains made
of more than one material� Currently� there is an algo�
rithm for re�ning a triangulated simple polygon into a
nonobtuse triangulation with O�n�� triangles� and also
an  �n�� lower bound ��	� There is still no algorithm
for polynomial�size nonobtuse triangulation of planar
straight�line graphs� a solution to this problem would
give another solution to �conforming Delaunay trian�
gulation� ���	� Mitchell ���	 recently showed how to
triangulate planar straight�line graphs with maximum
angle at most ����� using at most O�n� logn� triangles�

Another important direction is exploring whether our
ideas can be used for related mesh�generation prob�
lems� For instance� disk�packing may yield a simpler
algorithm for the problem of no�small�angle� nonobtuse
triangulation ��� ��	� Perhaps we can use our meth�
ods to produce nonobtuse meshes with skinny trian�
gles aligned with the boundary� �See ���	 for aligned
no�large�angle meshes�� Or perhaps our methods can
be allied with a heuristic method called �bubble sys�
tems� ���	�

Finally� higher dimensions are still a mystery� Do
three�dimensional polyhedra admit polynomial�size tri�
angulations without obtuse dihedral angles� Algo�
rithms for point sets are known ��� ��	�
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