Enhance Ionic Conductivity & Stability of La_{2/3-x} □_{1/3-2x}Li_{3x}TiO₃ (LLTO) Solid-Electrolyte by Grain Boundary Glass Doping

> Yue Zhou, Meng Yao, Greg Collins, <u>Xingbo Liu</u> Department of Mechanical and Aerospace Engineering West Virginia University Morgantown, WV 26506 – 6106

> > September 26. 2016

Acknowledgement

- Dr. Imre Gyuk
- Dr. Vince Sprenkle / PNNL
- My Team members in WVU Mr. Yue Zhou,
 Mr. Meng Yao, Dr. Greg Collins
- Dr. Bin Liu / Shanghai University

Background

Advantages of solid state electrolytes:

- I. Non-flammability
- II. Chemical stability
- III. Low electric conductivity
- IV. Thermal stability

Concerns:

III.

- Low ionic conductivities, especially at grain boundaries
- II. Manufacturing related issues

¥

C.W. Ban, G.M. Choi/Solid State Ionics 140 (2001) 285-292

Overall Scientific Approach

Developing Ceramics-Glass Composites with improved total conductivity and stability

Summary of FY15 Effort

XRD pattern of LLTO we synthesized

SEM graph of LLTO cross section

Typical EIS of LLTO@30°C

LLTO bulk and GB conductivities at different temperatures

Summary of FY15 Effort

	gb	diff	total
LLTO	0.000056	0.0011	0.000053
1%	0.00013	0.00105	0.000116
2%	0.00034	0.00089	0.000246
5%	0.000086	0.00074	0.000077
10%	0.000021	0.00034	0.000020

Improve GB conductivity by 6 times Improve overall conductivity by 5 times

6

Outline

- Fundamental understanding of ionic conduction in LLTO and LLTO/Glass systems
 - Ab initio calculations
 - Experimental characterization in LLTO/Al2O3 system
- Improving microstructures and conductivities by optimizing manufacturing process
- Full-cell assembly & characterization

Ab Initio Calculation

Structure of LLTO

Space group: Pm-3m (221)

Cell parameter: 3.8717Å

Li:La:

=3:4:1

LLTO supercell

Structure of Oxide Glass

Glass: SiO_2 - B_2O_3 - Li_2O

Ensemble: NPT

Temperature: 3000K

Pressure: 0.1GPa

Number of steps: 10000

Time step: 1fs

Structure of LLTO/Oxide Glass Interface

LLTO/oxide glass interface

Lithium-Diffusion Pathways in LLTO

Lithium ion diffusion pathway

Initial structure of LLTO

Final structure of LLTO

11

Lithium-Diffusion Pathways in LLTO

<u>1</u>2

Effect of Al₂O₃ on LLTO-base Electrolytes

Effect of Al₂O₃ on LLTO-base Electrolytes

¥

Effect of Al₂O₃ on LLTO-base Electrolytes

Al ₂ O ₃ content	σ_{bulk}	$\sigma_{\sf gb}$	E _{a, bulk}	E _{a, gb}
(wt %)	(S cm ⁻¹)	(S cm ⁻¹)	(eV)	(eV)
0	1.65×10 ⁻⁴	9.03×10 ⁻⁶	0.41	0.48
5	1.66×10 ⁻⁴	1.09×10 ⁻⁵	0.24	0.32
10	9.33×10 ⁻⁴	2.38×10 ⁻⁵	0.17	0.37
15	9.56×10⁻⁵	2.08×10 ⁻⁷	0.50	0.66

Improving Conductivity by Optimizing Manufacturing

The vapor pressure of Li is found from the following relation:

298 K to m.p.: log (*P*/Pa) = 10.673 - 8310 / (*T*/K)

- The vapor pressure at 1150 °C is found to be ~ 10X that at 900 °C.
- The sample is surrounded by LLTO powder and is sealed under a ceramic cover. The melting temperature of the glass is 850 °C so the glass seal is in a molten state during the sintering process. This is to prevent fracture of the ceramic or failure of the seal surface.

Improving Conductivity by Optimizing Manufacturing

Conductivities	GB (S/cm)	Diff (S/cm)	Total (S/cm)
Open Sample	0.00034	0.00089	0.000246
Sealed Sample	0.00039	0.00090	0.000272
Activation	GB	Diff	
Energies	(eV)	(eV)	
Open Sample	0.33	0.31	
Sealed Sample	0.32	0.31	

- Dominant Peak (102)
- Decrease in the (101), (111), (103), (113) and (211) peaks
- Increase in the (200) peak
- Cell distortion caused by the Ti atom plays a key role in the Li hopping mechanism

Future Work

- Fundamental Understanding of Li-diffusion in the LLTO and Composite Electrolyte
- Investigation of the Li Conduction at Electrolyte/Electrodes Interface
- Explore Other Solid-Electrolytes
- Develop Realistic Battery Manufacturing & Assembling Processes

Thank You

