All-Silicon Carbide power module based boost converter platform for grid-tied energy storage

> Ranbir Singh, Subhashish Bhattacharya* and Stan Atcitty**
> GeneSiC Semiconductor Inc.
> *FREEDM Center, North Carolina State Univ.
> **Sandia National Laboratories

Acknowledgement: The authors thank Dr. Imre Gyuk for funding this work and Dr. Stan Atcitty for technical contributions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. SBIR Phase I Grant DE-SC0013816

2

Battery Energy Storage Power Electronics Architectures

- Bidirectional, isolated DC-AC
 Power Conversion
 systems needed
- High Efficiencies are needed due to twoway power flow
- Compact systems help in wider deployments
- Low Frequency Transformer
 occupies space

Compact, High Efficient Architecture enabled by High Voltage Devices

Energy Efficiency Through Innovation

High Frequency 3 Phase Transformer Configuration

High-frequency (10 kHz) transformer configuration for the DC-DC DAB stage. The four limbs of the three transformers are connected in star and delta fashion to produce a stepped waveform at the middle limb of the transformer.

GeneSiC's Power Discrete and Module Roadmap

Transistors and Rectifiers

6

Ultra High Voltage devices

Thyristors and Rectifiers

7

Calculated Loss Comparisons at 1 MVA

Table 1: Medium Voltage/Low Current Side loss even at 1 MVA operation.

Active Power (MW)	Reactive Power (MVAR)	Loss (W)
1	0	3064
0.8	0.6	4175
0.6	0.8	5330

Table 2: Low Voltage/ High Current Side Loss

Active Power (MW)	Reactive Power (MVAR)	Loss (kW)
1	0	32
0.8	0.6	27
0.6	0.8	23

Status and Future Efforts

Current Status

- Project Started in July 2015
- 6.5kV SiC Thyristors and 1200 V SJTs supplied to NCSU
- SiC Thyristor Trigger circuits completed at NCSU/FREEDM
- Modeling of Circuit Looses being conducted
- Future Efforts in Phase I
 - Complete SPICE Modeling of Devices to be used
 - Circuits Modeling to estimate losses and efficiency gains
 - Quantify the impact of All-SiC based power electronics on grid-tied energy storage systems

Grant Details

- Principal Investigator: Dr. Ranbir Singh and Prof.
 Subhashish Bhattacharya
- Program Manager: Dr. Ranbir Singh
- Grantee:

GeneSiC Semiconductor Inc. and North Carolina State University

- 43670 Trade Center Place
- Suite 155
- Dulles VA 20166
- +1 703 996 8200 (ph)
- ranbir.singh@genesicsemi.com