

Detroit Edison's Advanced Implementation of A123's Community Energy Storage Systems for Grid Support (DE-OE0000229)

Hawk Asgeirsson
Principal Investigator

Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory

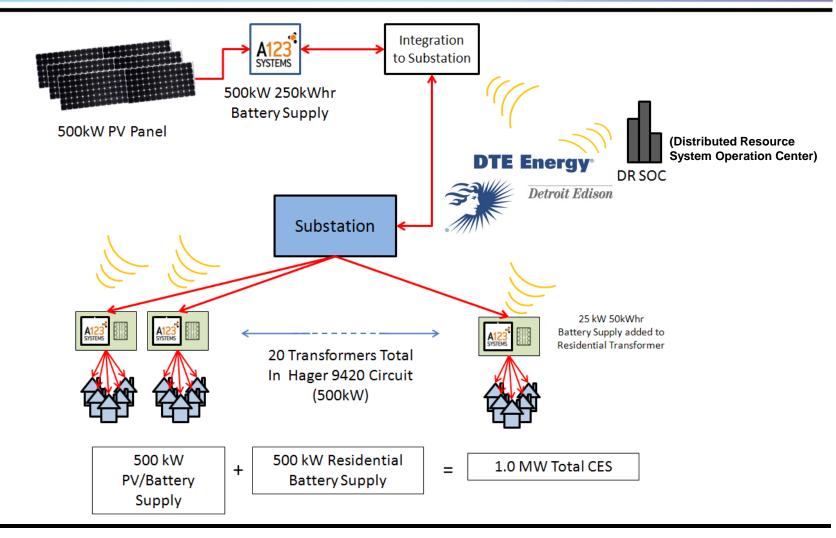
November 3, 2010

Community Energy Storage

- The project is a proof of concept of an aggregated Community Energy Storage (CES) system in a utility territory; demonstrating the following capabilities:
 - Voltage/VAR Support
 - Integration renewable generation
 - Islanding during outages
 - Frequency Regulation
- Demonstrate the application of secondary-use EV batteries as CES devices.
 Identifying alternative applications for EV type batteries may accelerate the reduction of cost for electric vehicle batteries.
- Identify gaps, areas of improvement, and provide suggestions on how CES devices and control algorithms can be standardized across the U.S.
- Provide a functional and economic analysis for using the CES system in electric utility applications.

Project Team and Role

Team Members and Roles					
DTE Energy	Project lead & Project Management Hosting sites				
A123° SYSTEMS	CES Supplier Technical Support				
edd	Distribution modeling Develop dispatching algorithm				
KEMA≼	Verification of performance Economic analysis support				
CHRYSLER	Supplier of used PEV batteries Data sharing				
NEXTÉNERGY - Extensió Sinusty (Prough Chrosp) Grossing	Economic benefit assessment Additional applications for storage				
national grid The power of action.	Participate in CES development Interoperability in another utility area				



Project Phases

Phase 1	Phase 2	Phase 3	Phase 4	Phase 5
Project Definition and NEPA Compliance	Final Design and Construction	Commissioning and Operations	Utilization of Secondary Use Batteries	Write Up of Demonstration Assessment
 Update Project Management Plan NEPA Compliance Baseline for Evaluating Project Performance Preliminary Design & Planning 	 Finalize Design of CES System CES System Design for Project Planning, Measuring, Architecture and Algorithms Creation of Dispatch Algorithms Communications and Control Procurement of CES Systems for Installation 	 Commissioning of Operational Functionalities Field Testing of Designed CES Capabilities Data Monitoring and Collection of Performance Data Reporting of Data and Operation 	• Integration of Secondary Use Batteries	Write final report
01/2010-05/2011	01/2011-06/2011	07/2011-06/2013	07/2013-06/2014	07/2014-12/2014

CES System Overview

CES Modes of Operation

Smart Grid Infrastructure Enabling Multi-mode Operation

Demonstration Items:

1. Frequency Regulation: (DR-SOC dispatch, Retransmit AGC from MISO)

2.a **VAR Support** : (Local control, PF management)

2.b **Voltage support:** (Local control, Meet utility v-schedule)

3.a **PV output shifting:** (Local control, Time of day)

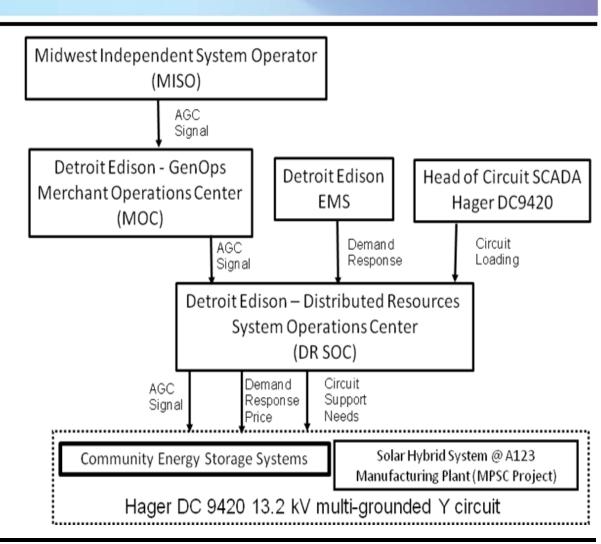
3.b **PV output leveling:** (Local control ,Ramp management)

4. Demand response

4.a Grid support: (DR-SOC dispatch, 'N-1')

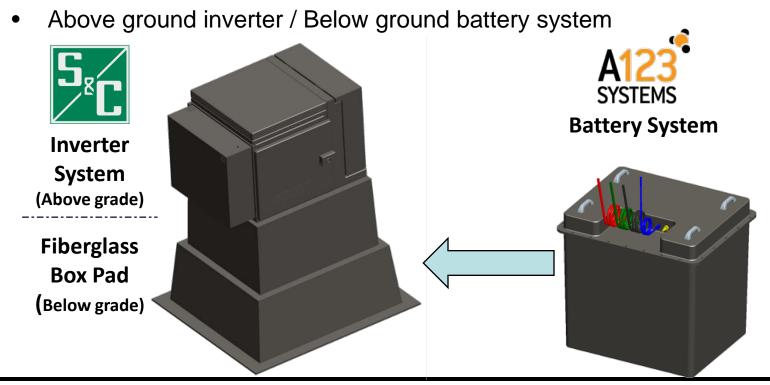
4.b Distribution circuit peak shaving: (DR-SOC dispatch or schedule)

4.c Customer peak shaving: (Local control, demand charge mgmt)


5. Islanding: Control scheme development for intentional islanding

Communication & Control Architecture

Communication and Controls


- DTE Energy DR-SOC
- A123 Systems BMS
- S&C Inverter

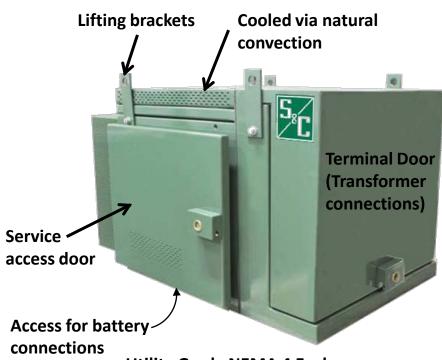
Community Energy Storage Concept

- Leverage the independent work done by S&C
- Split packaging solution
 - Bi-directional inverter with communications and control to Utility (DTE DR SOC)
 - Battery system with communications and control to inverter system

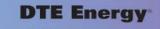
Preliminary CES Features

- 25 kW, 2-hour run-time, single-phase, pad-mounted
- Battery life targeted for at least 1000 full-power discharges
- Aggregated at DTE's DR SOC
- Peak shaving programmable or dispatched
- Contactor to separate customers from utility source in the event of a disturbance
 - Improves SAIDI
 - Seamless return to normal utility source
- Local voltage regulation by controlling inverter VARs
 - Flatten feeder voltage to reduce losses
- No maintenance "set it and forget it"
 - No fans, no air filters
- Below-ground battery vault
 - Smaller exposed system footprint for easier siting
 - Cool & near constant temperature for passive cooling

CES External Features


Battery System

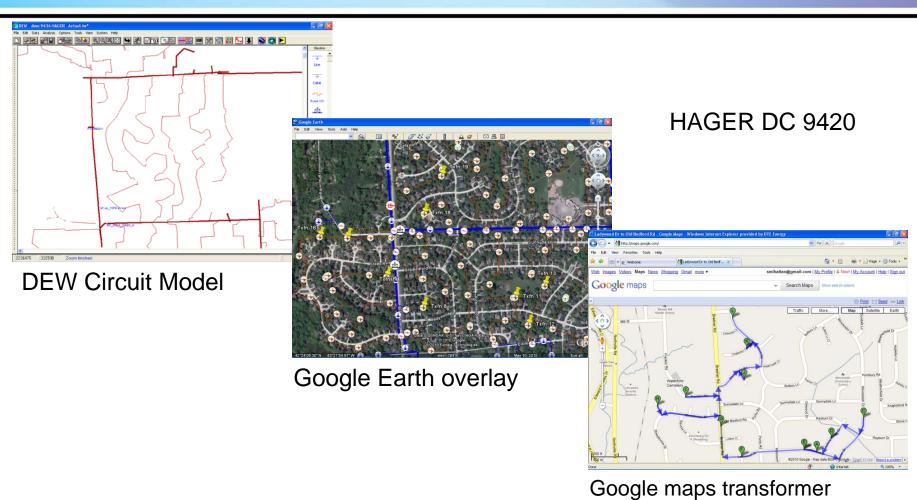
Liquid tight seals at all penetrations


Sealed resin transfer molded cover and base container

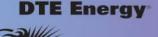
Approx Dims: 30 in x 33 in x 35 in tall

Inverter System

Utility Grade NEMA 4 Enclosure Approx Dims: 33 in x 39 in x 30 in tall



Preliminary Battery System Specifications


	475 V	475 Vdc 50 kWh CES Battery Pack				
	Cho	Charge		Discharge		
Duration	cont	10 sec	cont	10 sec		
Test Pack Power (kW)	13.2	26.3	26.3	79.0		
Pack Vmax	542	544	540	540		
Pack Vnom	482	484	476	468		
Pack Vmin	405	405	401	393		
Pack Capacity (AH)		117.6				
Pack Energy (kWHr)	54.6	54.2	54.2	53.4		
Total Cell Weight (lbs)		950				
Est Pack Weight (lbs)		1,250				
Pack Dimensions (in)		30 x 33 x 35				
Pack Volume (ft³)		20.1				

Modeling and Power Flow Analysis

locations

Finding Optimal Transformer Locations

Criteria for List of 50 Transformers:

- Rated at 25 or 50 kVA
- 5-10 Customers
- Max Annual kVA between 25 and 50
- Heavily loaded
- Frequent outages
- Circuit phase imbalance
- Accessibility

Field Evaluation:

Summary/Conclusions

- A123 and S&C have been collaborating on the development of an integrated CES system
- Initial communication and control architecture has been outlined using Detroit Edison's DR-SOC
- Detroit Edison has evaluated several distribution transformers and has identified potential locations for CES units

Future Tasks

- Finalize contract process with DOE and sub-award team members
- Identify key project and CES product requirements
- Finalize CES installation sites and begin gathering transformer baseline data
- Create use cases for each capability demonstration