- Data Management
- Becker, Carina, Carolin Hundt, Claudia Engelhardt, Johannes Sperling, Moritz Kurzweil, and Ralph Müller-Pfefferkorn. “Data management plan tools: Overview and evaluation.” In Proceedings of the Conference on Research Data Infrastructure, vol. 1. 2023.
- Hudson-Vitale, Cynthia, and Heather Moulaison-Sandy. “Data Management Plans: A Review.” DESIDOC Journal of Library & Information Technology 39, no. 6 (2019).
- Smale, Nicholas, Gareth Denyer, Kathryn Unsworth, Elise Magatova, and Daniel Barr. “A review of the history, advocacy and efficacy of data management plans.” International Journal of Digital Curation (2020).
- Software
- Barker, Michelle, Neil P. Chue Hong, Daniel S. Katz, Anna-Lena Lamprecht, Carlos Martinez-Ortiz, Fotis Psomopoulos, Jennifer Harrow et al. “Introducing the FAIR Principles for research software.” Scientific Data 9, no. 1 (2022): 622.
- Smith, Arfon M., Kyle E. Niemeyer, Daniel S. Katz, Lorena A. Barba, George Githinji, Melissa Gymrek, Kathryn D. Huff et al. “Journal of Open Source Software (JOSS): design and first-year review.” PeerJ Computer Science 4 (2018): e147.
- The Open Source Initiative Approved Licenses (software).
- Clarence the Tortoise
- Ontologies
- Oltjen, William C, Fan, Yangxin, Liu, Jiqi, Huang, Liangyi, Huang, Liangyi, Yu, Xuanji, Li, Mengjie, Seigneur, Hubert, Xiao, Xusheng, Davis, Kristopher O., Bruckman, Laura S, Wu, Yinghui, & French, Roger H. FAIRification, Quality Assessment, and Missingness Pattern Discovery for Spatiotemporal Photovoltaic Data. United States. https://doi.org/10.2172/1959042
- Priyan Rajamohan, Alexander Harding Bradley, Hayden Caldwell, Erika I. Barcelos, and Roger H. French, “FAIRmaterials: Find the docs.” SDLE Res. Cntr., Case Western Reserve University, 2023. Available: https://cwrusdle.bitbucket.io/. [Accessed: Mar. 14, 2023]
- A. Nihar et al., “Toward Findable, Accessible, Interoperable and Reusable (FAIR) Photovoltaic System Time Series Data,” 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 2021, pp. 1701-1706, doi: 10.1109/PVSC43889.2021.9518782.
- Cambridge Semantics OWL 101: https://cambridgesemantics.com/blog/semantic-university/learn-owl-rdfs/owl-101/
- CSIRO’s Intro to RDF and OWL Tutorial: https://csiro-enviro-informatics.github.io/info-engineering/tutorials/tutorial-intro-to-rdf-and-owl.html
- FAIR Materials FindTheDocs: https://cwrusdle.bitbucket.io/
- WebVOWL Ontology visualizer: https://webvowl-w4rydgnccq-ul.a.run.app/
- JSON-LD Playground: https://json-ld.org/playground/
- Licensing
- Data Repositories
- Data-specific conferences:
- Neural Information Processing Systems (NeurIPS)
- Special Interest Group on Knowledge Discovery and Data Mining (KDD)
- IEEE International Conference on Image Processing (ICIP)
- Pure data journals (General):
- Pure data journals (Domain-specific):
- Mixed Journals
- Why Equitable Accessibility Matters – Statistics
- Why Equitable Accessibility Matters – Perspective
- Abdolrahmani, A., Storer, K. M., Roy, A. R. M., Kuber, R., & Branham, S. M. (2020). Blind leading the sighted: drawing design insights from blind users towards more productivity-oriented voice interfaces. ACM Transactions on Accessible Computing (TACCESS), 12(4), 1-35.
- Dobel, C., Nestler-Collatz, B., Guntinas-Lichius, O., Schweinberger, S. R., & Zäske, R. (2020). Deaf signers outperform hearing non-signers in recognizing happy facial expressions. Psychological research, 84, 1485-1494.
- Han, C., Mitra, P., & Billah, S. M. (2024, May). Uncovering Human Traits in Determining Real and Spoofed Audio: Insights from Blind and Sighted Individuals. In Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 1-14).
- Pang, W., Xing, H., Zhang, L., Shu, H., & Zhang, Y. (2020). Superiority of blind over sighted listeners in voice recognition. The Journal of the Acoustical Society of America, 148(2), EL208-EL213.
- Grant, A., & Kara, H. (2021). Considering the Autistic advantage in qualitative research: the strengths of Autistic researchers. Contemporary Social Science, 16(5), 589-603.
- Taylor, H., & Vestergaard, M. D. (2022). Developmental dyslexia: disorder or specialization in exploration?. Frontiers in psychology, 13, 889245.
- Schippers, L. M., Horstman, L. I., Velde, H. V. D., Pereira, R. R., Zinkstok, J., Mostert, J. C., … & Hoogman, M. (2022). A qualitative and quantitative study of self-reported positive characteristics of individuals with ADHD. Frontiers in Psychiatry, 13, 922788.
- Bury, S. M., Hedley, D., Uljarević, M., & Gal, E. (2020). The autism advantage at work: A critical and systematic review of current evidence. Research in Developmental Disabilities, 105, 103750.
- Hatak, I., Chang, M., Harms, R., & Wiklund, J. (2021). ADHD symptoms, entrepreneurial passion, and entrepreneurial performance. Small business economics, 57, 1693-1713.
- Language
- Generated Graphs and Plots
- Color vision deficiency types: https://www.allaboutvision.com/conditions/color-blindness/types-of-color-blindness/
- Alivia Eng, M. R. (2023). Mastcam Image Data (Sols 2303-3672) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.8339229
- Crameri, F., Shephard, G. E., & Heron, P. J. (2020). The misuse of colour in science communication. Nature communications, 11(1), 5444.
- Vilkin, Aleksey and Safonov, Ilia. (2014). Newspaper and magazine images segmentation dataset. UCI Machine Learning Repository. https://doi.org/10.24432/C5N60V
matplotlib
colormaps: https://matplotlib.org/stable/users/explain/colors/colormaps.html
- Big Data
- Li, J., Li, D., Savarese, S., & Hoi, S. (2023, July). Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In International conference on machine learning (pp. 19730-19742). PMLR.
- Leotta, M., Mori, F., & Ribaudo, M. (2023). Evaluating the effectiveness of automatic image captioning for web accessibility. Universal access in the information society, 22(4), 1293-1313.
- Mei, X., Liu, X., Plumbley, M. D., & Wang, W. (2022). Automated audio captioning: An overview of recent progress and new challenges. EURASIP journal on audio, speech, and music processing, 2022(1), 26.
- Audio visualization
- Truskinger, A., Brereton, M., & Roe, P. (2018, October). Visualizing five decades of environmental acoustic data. In 2018 IEEE 14th International Conference on e-Science (e-Science) (pp. 1-10). IEEE.
- Cottingham, M. D., & Erickson, R. J. (2020). Capturing emotion with audio diaries. Qualitative Research, 20(5), 549-564.
- Visual sonification
- Ali, S., Muralidharan, L., Alfieri, F., Agrawal, M., & Jorgensen, J. (2020). Sonify: making visual graphs accessible.” In Human Interaction and Emerging Technologies: Proceedings of the 1st International Conference on Human Interaction and Emerging Technologies (IHIET 2019), August 22-24, 2019, Nice, France (pp. 454-459). Springer International Publishing.
- Sawe, N., Chafe, C., & Treviño, J. (2020). Using data sonification to overcome science literacy, numeracy, and visualization barriers in science communication. Frontiers in Communication, 5, 46.
- Tactile vibration responses
- Yoshioka, T., Bensmaia, S. J., Craig, J. C., & Hsiao, S. S. (2007). Texture perception through direct and indirect touch: An analysis of perceptual space for tactile textures in two modes of exploration. Somatosensory & motor research, 24(1-2), 53-70.
- Otake, K., Okamoto, S., Akiyama, Y., & Yamada, Y. (2022). Tactile texture display combining vibrotactile and electrostatic-friction stimuli: Substantial effects on realism and moderate effects on behavioral responses. ACM Transactions on Applied Perception, 19(4), 1-18.
- Raw/Original Data Components
- Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., … & Belongie, S. (2015). Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 595-604).
- Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., … & Ritter, M. (2017, March). Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 776-780). IEEE.
- “[HSD] Practise Toniic, ChrizZ, Feybi (Melbourne Shuffle Hamburg).” YouTube, uploaded by Feybi11 16 July, 2010 https://www.youtube.com/watch?v=4X2aUZFZlzc&t=31s
- Diment, A., Mesaros, A., Heittola, T., & Virtanen, T. (2017). TUT Rare sound events, Development dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.401395
- Gaur, M., Alambo, A., Sain, J. P., Kursuncu, U., Thirunarayan, K., Kavuluru, R., Sheth, A., Welton, R., & Pathak, J. (2019, May 4). Reddit C-SSRS Suicide Dataset. The World Wide Web Conference. https://doi.org/10.5281/zenodo.2667859
- Michal Ptaszynski, Agata Pieciukiewicz, Pawel Dybala, Pawel Skrzek, Kamil Soliwoda, Marcin Fortuna, Gniewosz Leliwa, & Michal Wroczynski. (2022). Expert-annotated dataset to study cyberbullying in Polish language [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7188178