

EESAT 2005

FLYWHEEL-BASED FREQUENCY REGULATION DEMONSTRATION PROJECTS STATUS

Matt Lazarewicz
Jim Arseneaux

October 17-19, 2005

San Francisco, CA

ACKNOWLEDGMENTS

 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL).

Topics of Discussion

- What is Frequency Regulation (FR)?
- Flywheel Characteristics for FR
- CEC/DOE and NYSERDA/DOE Projects
- Demonstration System Description
- Initial Performance Status
- The Future

Typical "Regulation" Profile

ISO Goal:

Load = Power Generated

Power < Load:

Frequency drops under 60 Hz.

Power > Load:

Frequency rises over 60 Hz.

Short term variation

- ~ +/-1% to 2% of daily load
- Managed via regulation
- Fluctuation is net zero
- Well suited for energy storage and recycling
- Typical 100-1000MW per control area

Frequency Regulation Basics

Flash presentation at www.beaconpower.com

Trends in Wind Deployment

- Today, 1% of power is from wind
- By 2020, 6% will be wind generated, driven by state Renewable Portfolio
 Standards
- Wind introduces power fluctuations and intermittencies
- Will require more regulation per MW generated (CAISO has indicated as much as 4x)

Frequency Regulation Market Dynamics

- Deployment of wind, driven by Renewable Portfolio Standards, will increase demand
- Older fossil fuel-powered plants, frequently used for regulation, are being taken out of service
- Emission regulations add equipment that reduces frequency regulation capability

Advanced Flywheel Technology

Visit Electricity Storage Association Website

www.electricitystorage.org

Critical Design Drivers

- Output Power (Motor)
- Hold-up Time (Stored Energy)
- Input/output Voltage
- Cyclic Life
 - Quantity (Total)
 - Depth of Discharge
 - Frequency
- Continuous vs. Intermittent Duty Cycle
- Physical Size & Weight
- Environmental
 - Temperature/Humidity
 - Vibration (Normal Operation)

Beacon's Product Evolution

2000

2004

2006

2kWh

1 kW

2001

6kWh 2 kW

6kWh 15 kW

25kWh 100 kW

Over 500,000 hours of operation

 100kW demonstration unit

• 1 MW SEM commercial unit

The Beacon Solution to Freq Regulation

Ten 25 kWh flywheels / 1 MW of regulation

- Fast response
- High reliability
- Competitive capital cost
- Lowest operational cost
- 20-year life
- Very low maintenance
- Sustainable advantages
- Emission-free, clean technology

Smart Energy Matrix

(13,000lb of composites)

Demonstration Projects Under Contract

California Energy Commission/DOE

- 100 kW version of SEM using modified existing flywheels
- DUIT facility (PG&E Substation R&D facility) in San Ramon, CA
- Team with Connected Energy for communications

NYSERDA/DOE

- 100 kW version of SEM using modified existing flywheels
- Power & Composite Technologies (Industrial Site), Amsterdam NY
- Team with Connected Energy for communications

NYSERDA

- Universal Grid Interconnect Device Study for DG "Green Box"
- Team with Connected Energy
- Interface between grid and DG assets
- Scaled lab demonstration

DUIT Facility in San Ramon, CA

Unloaded from Truck

Connected to Grid

Check out communications

Weekend

System checkout

All flywheels at speed

9/21 7AM

9/21 11AM

9/22

9/23-25

9/26

9/27

Beacon's Smart Energy Location

PCT plant in Amsterdam, NY

- Delivery 4th qtr 2005
- Installation in "Distribution Cloud"
- Demonstrate low cost communication with ISO
- Reactive Power testing included in plan
- Evaluate using line frequency as regulation signal

Objectives of Demonstration Projects

- Proof of concept on ~1/10th power scale
- Show ability to follow fast changing Frequency Regulation signals
- Demonstrate anti-islanding
- Validate interconnection capability
- Demonstrate performance & economic value
- Develop and demonstrate communications with grid operators
- Collect data for product specifications
- Gain industry confidence
- Report results to the industry

System Operation

Demo Schematic

Outside view of System

Inside view of system

Data Communication Topology

System Graphical User Interface

Remote Monitoring and Control of Flywheel and System Parameters

Preliminary Demo Performance Data

Preliminary Product Analysis

Performance vs. existing PJM Signal

Evaluating System Operation in different Interconnects

The Future-Flywheels are here to stay!

- Flywheels are an ideal technology for Frequency Regulation
- Frequency Regulation requirements should increase
 - Renewable Portfolio Standards
 - Generator assets targeted for retirement are generally today's source of lower cost regulation
- New application potentials:
 - Growth of Distributed Generation will need high cyclic energy storage capability
 - Residential renewables should benefit from no-maintenance, "green", working energy storage
 - UPS functions

