Logan Blakely

Member of Technical Staff

Author profile picture

Member of Technical Staff

lblakel@sandia.gov

Google Scholar

(505) 845-7827

Biography

Logan Blakely received his Master of Computer Science degree, specializing in Machine Learning, from Portland State University in 2018. His research focus is in machine learning applied to power systems challenges, particularly in the intersection merging physics domain knowledge with machine learning techniques.

Education

  • Master of Computer Science, Portland State University

Publications

Matthew Reno, Logan Blakely, Rodrigo Trevizan, Bethany Pena, Matthew Lave, Joseph Azzolini, Jubair Yusuf, Christian Jones, Alvaro Furlani Bastos, Rohit Chalamala, Mert Korkali, Chih-Che Sun, Jonathan Donadee, Emma Stewart, Vaibhav Donde, Jouni Peppanen, Miguel Hernandez, Jeremiah Deboever, Celso Rocha, Matthew Rylander, Piyapath Siratarnsophon, Santiago Grijalva, Samuel Talkington, Karl Mason, Sadegh Vejdan, Ahmad Khan, Jordan Mbeleg, Kavya Ashok, Deepak Divan, Feng Li, Francis Therrien, Patrick Jacques, Vittal Rao, Cody Francis, Nicholas Zaragoza, David Nordy, Jim Glass, Derek Holman, Tim Mannon, David Pinney, (2022). IMoFi (Intelligent Model Fidelity): Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration Updated Accomplishments https://doi.org/10.2172/1888157 Publication ID: 80226

Michael Eydenberg, Lisa Batsch-Smith, Charles Bice, Logan Blakely, Michael Bynum, Fani Boukouvala, Anya Castillo, Joshua Haddad, William Hart, Jordan Jalving, Zachary Kilwein, Carl Laird, Joshua Skolfield, (2022). Resilience Enhancements through Deep Learning Yields https://doi.org/10.2172/1890044 Publication ID: 80293

William Bradley, Jinhyeun Kim, Zachary Kilwein, Logan Blakely, Michael Eydenberg, Jordan Jalving, Carl Laird, Fani Boukouvala, (2022). Perspectives on the integration between first-principles and data-driven modeling Computers and Chemical Engineering https://doi.org/10.1016/j.compchemeng.2022.107898 Publication ID: 80249

Matthew Reno, Logan Blakely, (2022). AI-Based Protective Relays for Electric Grid Resiliency https://doi.org/10.2172/1844320 Publication ID: 80397

Matthew Reno, Logan Blakely, Rodrigo Trevizan, Bethany Pena, Matthew Lave, Joseph Azzolini, Jubair Yusuf, Christian Jones, Alvaro Furlani Bastos, Rohit Chalamala, Mert Korkali, Chih-Che Sun, Jonathan Donadee, Emma Stewart, Vaibhav Donde, Jouni Peppanen, Miguel Hernandez, Jeremiah Deboever, Celso Rocha, Matthew Rylander, Piyapath Siratarnsophon, Santiago Grijalva, Samuel Talkington, Cristian Gomez-Peces, Karl Mason, Sadegh Vejdan, Ahmad Khan, Jordan Mbeleg, Kavya Ashok, Deepak Divan, Feng Li, Francis Therrien, Patrick Jacques, Vittal Rao, Cody Francis, Nicholas Zaragoza, David Nordy, Jim Glass, (2022). IMoFi – Intelligent Model Fidelity: Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration (Final Report) https://doi.org/10.2172/1855058 Publication ID: 79926

Carl Laird, Jordan Jalving, Logan Blakely, Michael Eydenberg, Fani Boukouvala, Zachary Kilwein, (2021). Integration of Optimization and Machine Learning for Improving Electrical Grid Operation https://doi.org/10.2172/1896366 Publication ID: 76560

Jordan Jalving, Michael Eydenberg, Logan Blakely, Zachary Kilwein, Fani Boukouvala, Carl Laird, (2021). Physics-Informed Machine Learning Surrogates with Optimization-Based Guarantees: Applications to AC Power Flow https://doi.org/10.2172/1897922 Publication ID: 76791

Cristian Gomez-Peces, Santiago Grijalva, Matthew Reno, Logan Blakely, (2021). Estimation of PV Location based on Voltage Sensitivities in Distribution Systems with Discrete Voltage Regulation Equipment 2021 IEEE Madrid PowerTech, PowerTech 2021 – Conference Proceedings https://www.osti.gov/servlets/purl/1830987 Publication ID: 71669

Logan Blakely, Matthew Reno, C. Jones, Alvaro Furlani-Bastos, David Nordy, (2021). Leveraging Additional Sensors for Phase Identification in Systems with Voltage Regulators 2021 IEEE Power and Energy Conference at Illinois, PECI 2021 https://doi.org/10.2172/1860606 Publication ID: 77827

Logan Blakely, Matthew Reno, (2021). Identification and Correction of Errors in Pairing AMI Meters and Transformers 2021 IEEE Power and Energy Conference at Illinois, PECI 2021 https://doi.org/10.1109/PECI51586.2021.9435274 Publication ID: 77343

Logan Blakely, Bethany Pena, Matthew Reno, (2021). Parameter Tuning Analysis for Phase Identification Algorithms in Distribution System Model Calibration https://doi.org/10.2172/1864135 Publication ID: 78163

Logan Blakely, (2021). Identification and Correction of Errors in Pairing AMI Meters and Transformers https://doi.org/10.2172/1860605 Publication ID: 77826

Robert Broderick, Matthew Reno, Matthew Lave, Joseph Azzolini, Logan Blakely, Jason Galtieri, Barry Mather, Andrew Weekley, Randolph Hunsberger, Manohar Chamana, Qinmiao Li, Wenqi Zhang, Aadil Latif, Xiangqi Zhu, Santiago Grijalva, Xiaochen Zhang, Jeremiah Deboever, Muhammad Qureshi, Francis Therrien, Jean-Sebastien Lacroix, Feng Li, Marc Belletête, Guillaume Hébert, Davis Montenegro, Roger Dugan, (2021). Rapid QSTS Simulations for High-Resolution Comprehensive Assessment of Distributed PV https://doi.org/10.2172/1773234 Publication ID: 77507

Logan Blakely, Matthew Reno, Christian Jones, Alvaro Furlani Bastos, David Nordy, (2021). Leveraging Additional Sensors for Phase Identification in Systems with Voltage Regulators https://doi.org/10.1109/PECI51586.2021.9435242 Publication ID: 77342

Bethany Pena, Logan Blakely, Matthew Reno, (2021). Parameter tuning analysis for phase identification algorithms in distribution system model calibration 2021 IEEE Kansas Power and Energy Conference, KPEC 2021 https://www.osti.gov/servlets/purl/1863873 Publication ID: 78140

Zachary Kilwein, Fani Boukouvala, Carl Laird, Anya Castillo, Logan Blakely, Michael Eydenberg, Jordan Jalving, Lisa Batsch-Smith, (2021). AC-Optimal Power Flow Solutions with Security Constraints from Deep Neural Network Models Computer Aided Chemical Engineering https://doi.org/10.1016/B978-0-323-88506-5.50142-X Publication ID: 79597

Matthew Reno, Logan Blakely, (2020). Data-Driven Calibration of Electric Power Distribution System Models https://www.osti.gov/servlets/purl/1824735 Publication ID: 71107

Logan Blakely, Matthew Reno, (2020). Identifying errors in service transformer connections IEEE Power and Energy Society General Meeting https://www.osti.gov/servlets/purl/1643233 Publication ID: 66178

Logan Blakely, Matthew Reno, (2020). Phase identification using co-association matrix ensemble clustering IET Smart Grid https://doi.org/10.1049/iet-stg.2019.0280 Publication ID: 73605

Santiago Grijalva, Ahmad Khan, Matthew Reno, Logan Blakely, (2020). Estimation of PV Location in Distribution Systems based on Voltage Sensitivities https://www.osti.gov/servlets/purl/1798058 Publication ID: 73808

Kavya Ashok, Matthew Reno, Logan Blakely, Deepak Divan, (2019). Systematic Study of Data Requirements and AMI Capabilities for Smart Meter Analytics Proceedings of 2019 the 7th International Conference on Smart Energy Grid Engineering, SEGE 2019 https://doi.org/10.1109/SEGE.2019.8859916 Publication ID: 68664

Logan Blakely, Matthew Reno, Jouni Peppanen, (2019). Identifying Common Errors in Distribution System Models https://doi.org/10.1109/PVSC40753.2019.8980833 Publication ID: 69178

Logan Blakely, Matthew Reno, Jouni Peppanen, (2019). Identifying Common Errors in Distribution System Models https://doi.org/10.1109/PVSC40753.2019.8980833 Publication ID: 69112

Logan Blakely, Matthew Reno, Kavya Ashok, (2019). AMI Data Quality and Collection Method Considerations for Improving the Accuracy of Distribution Models https://doi.org/10.1109/PVSC40753.2019.8981211 Publication ID: 69118

Logan Blakely, Matthew Reno, Kavya Ashok, (2019). AMI Data Quality and Collection Method Considerations for Improving the Accuracy of Distribution Models https://doi.org/10.1109/PVSC40753.2019.8981211 Publication ID: 69119

Logan Blakely, Matthew Reno, Wu Feng, (2019). Spectral Clustering for Customer Phase Identification Using AMI Voltage Timeseries 2019 IEEE Power and Energy Conference at Illinois, PECI 2019 https://doi.org/10.1109/PECI.2019.8698780 Publication ID: 67140

Logan Blakely, Matthew Reno, (2019). Spectral Clustering for Customer Phase Identification Using AMI Voltage Timeseries Presentation https://www.osti.gov/servlets/purl/1602947 Publication ID: 67213

Logan Blakely, (2018). Spectral Clustering for Electrical Phase Identification Using Advanced Metering Infrastructure Voltage Timeseries https://www.osti.gov/biblio/1489536 Publication ID: 60637

Logan Blakely, Matthew Reno, (2018). Spectral Clustering for Phase Identification https://www.osti.gov/servlets/purl/1592348 Publication ID: 59986

Logan Blakely, Matthew Reno, Wu-chi Feng, (2018). Spectral Clustering for Identification of Electrical Phase Using Advanced Metering Infrastructure Voltage Time-series https://doi.org/10.15760/etd.6567 Publication ID: 60268

Logan Blakely, Matthew Reno, Robert Broderick, (2018). Decision tree ensemble machine learning for rapid QSTS simulations 2018 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2018 https://doi.org/10.1109/ISGT.2018.8403323 Publication ID: 53134

Logan Blakely, Matthew Reno, Robert Broderick, (2018). Decision Tree Ensemble Machine Learning for Rapid QSTS Simulations https://doi.org/10.1109/ISGT.2018.8403323 Publication ID: 60733

Showing Results. Show More Publications

Patents & Trademarks