Publications

Results 201–225 of 9,998
Skip to search filters

Inelastic peridynamic model for molecular crystal particles

Computational Particle Mechanics

Silling, Stewart A.; Barr, Christopher M.; Cooper, Marcia A.; Lechman, Jeremy B.; Bufford, Daniel C.

The peridynamic theory of solid mechanics is applied to modeling the deformation and fracture of micrometer-sized particles made of organic crystalline material. A new peridynamic material model is proposed to reproduce the elastic–plastic response, creep, and fracture that are observed in experiments. The model is implemented in a three-dimensional, meshless Lagrangian simulation code. In the small deformation, elastic regime, the model agrees well with classical Hertzian contact analysis for a sphere compressed between rigid plates. Under higher load, material and geometrical nonlinearity is predicted, leading to fracture. The material parameters for the energetic material CL-20 are evaluated from nanoindentation test data on the cyclic compression and failure of micrometer-sized grains.

More Details

Neuromorphic Graph Algorithms

Parekh, Ojas D.; Wang, Yipu W.; Ho, Yang H.; Phillips, Cynthia A.; Pinar, Ali P.; Aimone, James B.; Severa, William M.

Graph algorithms enable myriad large-scale applications including cybersecurity, social network analysis, resource allocation, and routing. The scalability of current graph algorithm implementations on conventional computing architectures are hampered by the demise of Moore’s law. We present a theoretical framework for designing and assessing the performance of graph algorithms executing in networks of spiking artificial neurons. Although spiking neural networks (SNNs) are capable of general-purpose computation, few algorithmic results with rigorous asymptotic performance analysis are known. SNNs are exceptionally well-motivated practically, as neuromorphic computing systems with 100 million spiking neurons are available, and systems with a billion neurons are anticipated in the next few years. Beyond massive parallelism and scalability, neuromorphic computing systems offer energy consumption orders of magnitude lower than conventional high-performance computing systems. We employ our framework to design and analyze new spiking algorithms for shortest path and dynamic programming problems. Our neuromorphic algorithms are message-passing algorithms relying critically on data movement for computation. For fair and rigorous comparison with conventional algorithms and architectures, which is challenging but paramount, we develop new models of data-movement in conventional computing architectures. This allows us to prove polynomial-factor advantages, even when we assume a SNN consisting of a simple grid-like network of neurons. To the best of our knowledge, this is one of the first examples of a rigorous asymptotic computational advantage for neuromorphic computing.

More Details

Al-alkyls as acceptor dopant precursors for atomic-scale devices

Journal of Physics Condensed Matter

Owen, J.H.G.; Campbell, Quinn C.; Santini, R.; Ivie, J.A.; Baczewski, Andrew D.; Schmucker, S.W.; Bussmann, Ezra B.; Misra, Shashank M.; Randall, J.N.

Atomically precise ultradoping of silicon is possible with atomic resists, area-selective surface chemistry, and a limited set of hydride and halide precursor molecules, in a process known as atomic precision advanced manufacturing (APAM). It is desirable to expand this set of precursors to include dopants with organic functional groups and here we consider aluminium alkyls, to expand the applicability of APAM. We explore the impurity content and selectivity that results from using trimethyl aluminium and triethyl aluminium precursors on Si(001) to ultradope with aluminium through a hydrogen mask. Comparison of the methylated and ethylated precursors helps us understand the impact of hydrocarbon ligand selection on incorporation surface chemistry. Combining scanning tunneling microscopy and density functional theory calculations, we assess the limitations of both classes of precursor and extract general principles relevant to each.

More Details

Credible, Automated Meshing of Images (CAMI)

Roberts, Scott A.; Donohoe, Brendan D.; Martinez, Carianne M.; Krygier, Michael K.; Hernandez-Sanchez, Bernadette A.; Foster, Collin W.; Collins, Lincoln; Greene, Benjamin G.; Noble, David R.; Norris, Chance A.; Potter, Kevin M.; Roberts, Christine C.; Neal, Kyle D.; Bernard, Sylvain R.; Schroeder, Benjamin B.; Trembacki, Bradley L.; LaBonte, Tyler L.; Sharma, Krish S.; Ganter, Tyler G.; Jones, Jessica E.; Smith, Matthew D.

Abstract not provided.

Harnessing exascale for whole wind farm high-fidelity simulations to improve wind farm efficiency

Crozier, Paul C.; Adcock, Christiane A.; Ananthan, Shreyas A.; Berger-Vergiat, Luc B.; Brazell, Michael B.; Brunhart-Lupo, Nicholas B.; Henry de Frahan, Marc T.; Hu, Jonathan J.; Knaus, Robert C.; Melvin, Jeremy M.; Moser, Bob M.; Mullowney, Paul M.; Rood, Jon R.; Sharma, Ashesh S.; Thomas, Stephen T.; Vijayakumar, Ganesh V.; Williams, Alan B.; Wilson, Robert V.; Yamazaki, Ichitaro Y.; Sprague, Michael S.

Abstract not provided.

Results 201–225 of 9,998
Results 201–225 of 9,998