Publications

Results 1176–1200 of 9,998
Skip to search filters

CephFS experiments on stria.sandia.gov

Widener, Patrick W.; Curry, Matthew L.

This report is an institutional record of experiments conducted to explore performance of a vendor installation of CephFS on the SNL stria cluster. Comparisons between CephFS, the Lustre parallel file system, and NFS were done using the IOR and MDTEST benchmarking tools, a test program which uses the SEACAS/Trilinos IOSS library, and the checkpointing activity performed by the LAMMPS molecular dynamics simulation.

More Details

Probing quantum processor performance with pyGSTi

Quantum Science and Technology

Nielsen, Erik N.; Rudinger, Kenneth M.; Proctor, Timothy J.; Russo, Antonio R.; Young, Kevin; Blume-Kohout, Robin J.

PyGSTi is a Python software package for assessing and characterizing the performance of quantum computing processors. It can be used as a standalone application, or as a library, to perform a wide variety of quantum characterization, verification, and validation (QCVV) protocols on as-built quantum processors. We outline pyGSTi's structure, and what it can do, using multiple examples. We cover its main characterization protocols with end-to-end implementations. These include gate set tomography, randomized benchmarking on one or many qubits, and several specialized techniques. We also discuss and demonstrate how power users can customize pyGSTi and leverage its components to create specialized QCVV protocols and solve user-specific problems.

More Details

Sensitivity and Uncertainty Analysis of Generator Failures under Extreme Temperature Scenarios in Power Systems

Emery, Benjamin F.; Staid, Andrea S.; Swiler, Laura P.

This report summarizes work done under the Verification, Validation, and Uncertainty Quantification (VVUQ) thrust area of the North American Energy Resilience Model (NAERM) Program. The specific task of interest described in this report is focused on sensitivity analysis of scenarios involving failures of both wind turbines and thermal generators under extreme cold-weather temperature conditions as would be observed in a Polar Vortex event.

More Details

Local-nonlocal coupling in Emu/PDMS

Silling, Stewart A.

A technique called the splice method for coupling local to peridynamic subregions of a body is described. The method relies on ghost nodes, whose values of displacement are interpolated from nearby physical nodes, to make each subregion visible to the other. In each time step, the nodes in each subregion treat the nodes in the other subregion as boundary conditions. Adaptively changing the subregions is possible through the creation and deletion of ghost nodes. Example problems in 2D and 3D illustrate how the method is used to perform multiscale modeling of fracture and impact events within a larger structure.

More Details
Results 1176–1200 of 9,998
Results 1176–1200 of 9,998